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Description

Gradient descent is based on the observation that if the
multi-variable function f(x) is defined and differentiable in a
neighborhood of a point a, then f(x) decreases fastest if one goes
from a in the direction of the negative gradient of f at −∇f(a). It
follows that if

xn+1 = xn − γ∇f(xn)

for a γ ∈ R+, then we have f(xn+1) ≤ f(xn)
The stopping criterion is often of the form ||∇f(x)|| ≤ ε, where ε is
small and positive.
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Line Search

Line search aims to find a γ satisfies

γ = argmins≥0f(x − s∇f(x))

An inexact way to find it is called Backtracking line search. Choose
α ∈ (0, 0.5), β ∈ (0, 1)

while f(x − γ∇f((x)) > f(x)− αγ||∇f(x)||2, γ = βγ
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Example 1

Consider Rosenbrock function

f(x, y) = (1 − x)2 + (y − x2)2

Then ∇f is

∇f =
(
∂f
∂x ,

∂f
∂y

)T
= (2x − 2 − 400x(y − x2), 200(y − x2))

This function has a norrow curved valley which contains the
minimum. The bottom of the valley is very flat. Because of the
curved flat valley the optimization is zigzagging slowly with small
step sizes towards the minimum.
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Example 1

Figure 1: Gradient descent method for Rosenbrock function. Starting at
(−0.5, 0.5), γ = 0.001 and ε = 0.0001.
Result:n = 20128, (x∗, y∗) = (0.999888, 0.999776), time = 0.682328s
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Example 1

Figure 2: Contour line
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Description
Newton’s method attempts to solve this problem by constructing a
sequence {xk} from an initial guess (starting point) x0 ∈ R that
converges towards a minimizer x∗of f by using a sequence of
second-order Taylor approximations of f around the iterates. The
second-order Taylor expansion of f around xk is

f ′(xk + t) = f(xk) + f ′(xk)t +
1
2 f ′′(xk)t2 + o(t2)

Its minimum can be found by setting the derivative to zero

f ′(xk) + f ′′(xk)t = 0

Hence
t = − f ′(xk)

f ′′(xk)
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Higher dimension

In higher dimension, the first order derivative changes into gradient,
and the second order derivative changes into Hessian matrix. Then

xn+1 = xn − [∇2f(xn)]
−1∇f(xn)

Often Newton’s method is modified to include a small step size
0 < γ ≤ 1 instead of γ = 1.

xn+1 = xn − γ[∇2f(xn)]
−1∇f(xn)
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Example 2

For a quadratic function

f(x, y) = ax2 + bxy + cy2

The Newton’s method takes only one step and reaches the
minimum. Since

∇f(x) = (2ax + by, 2cy + bx)T

and
∇2f(x) =

(
2a b
b 2c

)
Then

[∇2f(x)]−1∇f(x) = (x, y)T
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Newton’s method for Example 1

Set γ = 0.5, the results are:

n = 42, time = 0.400881s

And
(x∗, y∗) = (0.9999980, 0.9999958)
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Newton’s method for Example 1

Figure 3: Newton’s method for Rosenbrock function
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Newton’s method for Example 1

Figure 4: Contour line
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Comparison

Gradient descent Newton’s Method
Criterion smooth f twice smooth f
Iteration cost cheap (compute gradient) moderate to expensive (compute Hessian and solve linear system)

Rate
O(1/ε)
(acceleration:O(1/

√
ε)

strong convexity: O(log(1/ε))
O(log log(1/ε))
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Comparison

Figure 5: The rate of Gradient descent and Newton’s method
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Example 3

Consider

f(x, y) = 1
2(10x2 + y2) + 5 log(1 + e−x−y)

We have

∇f(x, y) =
(

10x − 5e−x−y

1 + e−x−y , y − 5e−x−y

1 + e−x−y

)T

and

∇2f(x, y) =
(

10 + 5e−x−y

(1+e−x−y)2
5e−x−y

(1+e−x−y)2

5e−x−y

(1+e−x−y)2 1 + 5e−x−y

(1+e−x−y)2

)
Then f is convex.
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Example 3

We start at (x0, y0) = (20, 20). For gradient descent, we set
γgd = 0.05. For Newton’s method, we set γnt = 0.5.
And set the same ε = 0.00001(tolerance).
The result shows that gradient descent takes 177 steps, 0.022490s
but Newton’s method takes 22 steps and 0.012445s only.
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Example 3

Figure 6: Comparison between Gradient descent and Newton’s method
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Model
Estimate Logistic equation

p(ŷ) = 1
1 + e−ŷ

where ŷ is given by

ŷ = ΘTX + ε = θ0 + θ1x1 + θ2x2

And estimates are trained using optimization of the conditional
maximum Likelihood (cost) function

L(Θ; yn; xn) =
N∏

n=1
[p(ŷn)]

yn [1 − p(ŷn)]
1−yn

ℓ(Θ; yn; xn) = −
N∑

n=1
(yn log[p(ŷn)] + (1 − yn) log[1 − p(ŷn)])
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Result

(a) Gradient descent (b) Newton’s Method

Figure 7: Rate of Convergence
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