
Econometrics Notes
Jiahui Shui
April 1, 2025

Contents
1 Probability and Statistics Review 2

1.1 Probability Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Conditional Probability and Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.7 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.8 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.9 Wald’s Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.10 Introduction to Bayesian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.11 Some Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Causal Inference and Potential Outcomes 5
2.1 Potential Outcomes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Randomized Controlled Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Selection Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Linear Regression 7
3.1 Algebraic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Large Sample Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Standard Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Instrumental Variables 9
4.1 Local Average Treatment Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Large-Sample Properties of the 2SLS and Weak Instruments . . . . . . . . . . . . . . . . . . . . . . . 11

5 Causality 11
5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Remark
Sections 1–4 are covered in ECON 220A and ECON 220B (the propensity score section has been removed, and the
M -estimation part is combined with the corresponding section in ECON 220C).
Sections 5 onward are covered in ECON 220C.

1

https://benshui.github.io/


1 Probability and Statistics Review
1.1 Probability Space
1.2 Conditional Probability and Independence
1.3 Random Variable
1.4 Convergence

Definition 1.1 (Convergence in Probability). Let {Xn}, X be random variables defined on (Ω, F ,P). We say Xn

converges to X in probability if, ∀ε > 0, P(|Xn − X| ≥ ε) → 0 as n → ∞. Or equivalently,
lim

n→∞
P(|Xn − X| < ε) = 1, ∀ε > 0 (1)

We denote it as Xn
p−→ X.

Definition 1.2 (Almost Surely Convergence). Let {Xn}, X be random variables defined on (Ω, F ,P). We say Xn

converges to X almost surely, if
P( lim

n→∞
Xn = X) = 1 (2)

This can be written as Xn
a.s.−−→ X

It is easy to say that Xn
a.s−−→ X ⇒ Xn

p−→ X. But the opposite direction is not true. Counterexample: consider
((0, 1], B(0,1], λ), where λ is Lebesgue measure. Let

ξn = 1(n/2k−1,(n+1)/2k−1), 2k ≤ n < 2k+1

Then P(|ξn| > ε) ≤ 1/2k → 0 but lim ξn(ω) does not exist for any ω ∈ (0, 1].

Definition 1.3 (Bounded in Probability). {Xn} is said to be bounded in probability if ∀ε > 0, ∃M > 0 such that
inf
n

P(|Xn| ≤ M) ≥ 1 − ε (3)

or equivalently, infn P(|Xn| > M) < ε

If Xn
p−→ 0, the we denote it as Xn = op(1).

If Xn is bounded in probability, then we denote it as Xn = Op(1). Moreover:

Xn = op(an) ⇔ Xn

an
= op(1)

and
Xn = Op(an) ⇔ Xn

an
= Op(1)

Exercise. Prove each of the followings:
(i) op(1) + op(1) = op(1)
(ii) op(1) + Op(1) = Op(1)
(iii) op(1)Op(1) = op(1)
(iv) (1 + op(1))−1 = Op(1)
(v) op(an) = anop(1)
(vi) Op(an) = anOp(1)
(vii) op(Op(1)) = op(1)

Remark. (iii) is an implication of Slutsky theorem. Since op(1)Op(1) d−→ 0, then it must converge to 0 in probability
by proposition 1.6

A powerful theorem to prove convergence in probability:

Theorem 1.4 (Continuous Mapping Theorem). Suppose that a measurable function g is (a.s.) continuous, then
Xn

p−→ X∞ ⇒ g(Xn) p−→ g(X∞) (4)
Moreover, it applies to a.s. convergence and convergence in distribution.
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Definition 1.5 (Convergence in Distribution). We say Xn
d−→ X if the distribution Pn := P{Xn ∈ ·} converges to

P := P{X ∈ ·}. Or, equivalently
FXn

(x) → F (x), for any point x that F (x) is continuous (5)

Another important result is that if for any t ∈ R, the characteristic function ϕXn(t) → ϕX(t), then Xn
d−→ X.

We can prove that
Xn

a.s.−−→ X ⇒ Xn
p−→ X ⇒ Xn

d−→ X (6)
Another important result for convergence in distribution is:

Proposition 1.6. If Xn
d−→ c where c is a constant, then Xn

p−→ c.

Proof. Let X = c, then FX(x) = 1{x≥c}. Hence, ∀ε > 0
lim

n→∞
P(|Xn − c| < ε) = lim

n→∞
P(c − ε < Xn < c + ε)

= lim
n→∞

(FXn(c + ε) − FXn(c − ε))

= 1 − 0 = 1

(7)

Then we know that Xn
p−→ c.

Lemma 1.7 (Marginal Convergence and Joint Convergence). • If Xn
a.s.−−→ X, Yn

a.s.−−→ Y , then (Xn, Yn) a.s.−−→ (X, Y )
• If Xn

p−→ X, Yn
p−→ Y , then (Xn, Yn) p−→ (X, Y )

• If Xn
d−→ X, Yn

d−→ Y and Xn, Yn are independent for all n, X, Y are independent, then (Xn, Yn) d−→ (X, Y )
• If Xn

d−→ X, Yn
d−→ c, then (Xn, Yn) d−→ (X, c)

Theorem 1.8 (Slutsky’s Theorem). Let Xn
d−→ X and Yn

p−→ c, where c is constant.
• Xn + Yn

d−→ X + c

• XnYn
d−→ cX

• Xn/Yn
d−→ X/c if c ̸= 0

Exercise. Let {Xn} be independent with Xn ∼ Gamma(αn, βn). αn → α, βn → β for some positive real number α, β.
Now, let β̂n be a consistent estimator for β. Prove that Xn/β̂n

d−→ Gamma(α, 1)

Theorem 1.9 (Delta Method). First order expansion: Suppose that g is differentiable at c, for any sequence 0 < an →
∞, we have

an(Xn − c) d−→ X ⇒ an[g(Xn) − g(c)] d−→ [∇g(c)]⊤X (8)
If ∇g(c) = 0, then we have similar expansion: To be completed

Example. Suppose that {Xi} i.i.d with mean µ and variance σ2. Consider the following estimator:
θ̂ = x̄2 (9)

Let θ := µ2. (1) Find the asymptotic distribution of
√

n(θ̂ − θ) provided µ ̸= 0. (2) If µ = 0, find the convergence
rate of θ̂ and its limit distribution.

Theorem 1.10 (Prohorov’s Theorem). If Xn
d−→ X, then Xn = Op(1)

Proof. ∀ε > 0, we can choose M0 sufficiently large such that
P(|X| > M0) < ε) (10)

Then, since P(|Xn| > M0) → P(|X| > M0), then we can choose n0 such that for all n ≥ n0, P(|Xn| > M0) < ε. Now,
we can select M1 such that

P(|Xi| > M1) < ε, ∀i = 1, · · · , n0 − 1 (11)
Then let M = max(M0, M1) we have P(|Xn| > M) < ε for all n.

A natural question is: will bounded in probability imply convergence in distribution? The answer is No. Consider
Xn = 2 + 1/n for even n and Xn = 1 + 1/(n + 1) for odd n. Then the sequence (X2k) converges in distribution to Y = 2.
And (X2k−1) converges in distribution to W = 1. Since Y ̸= W then the sequence does not converge in distribution.
Since all Xn lie in the interval [1, 5/2] ,then we can easily show that Xn = Op(1).
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1.5 Law of Large Numbers
Theorem 1.11 (WLLN, Khintchin). If {Xn} are i.i.d with E[X1] = µ < ∞, then

1
n

n∑
i=1

Xi
p−→ µ (12)

Theorem 1.12 (SLLN, Kolmogorov). If {Xn} are i.i.d with E[X1] = µ < ∞, then
1
n

n∑
i=1

Xi
a.s.−−→ µ (13)

1.6 Central Limit Theorem
Theorem 1.13 (Levy CLT). Suppose that {Xn} i.i.d with mean µ and variance σ2, then

√
n(X̄ − µ) d−→ N(0, σ2) (14)

where X̄ = 1
n

∑n
i=1 Xi.

1.7 Normal Distribution
Consider multivariate normal distribution: X ∼ N(µ, Σ), where µ ∈ Rd, Σ ∈ Rd×d. The moment generating function

is
MX(t) = E[et′X ] = et′µ+ 1

2 t′Σt, t ∈ Rd (15)
For any A ∈ Rm×d, we have AX + b ∼ N(Aµ + b, AΣA′). The probability density function of X is given by

fX(x) = 1
(2π)d/2det(Σ)1/2 exp

{
−1

2(x − µ)′Σ−1(x − µ)
}

, x ∈ Rd (16)

• If X1, · · · , Xn ∼ N(0, 1) i.i.d, then X2
1 + · · · + X2

n ∼ χ2
n.

• If X ∼ N(0, 1) and Q ∼ χ2
n are independent, then X√

Q/n
∼ tn

• If Q1 ∼ χ2
m, Q2 ∼ χ2

n are independent, then Q1/m
Q2/n ∼ Fm,n

1.8 Hypothesis Testing
Consider H0 : θ ∈ Θ, this is called the null hypothesis. The alternative hypothesis is H1 : θ ∈ Θ1, where Θ1 = Θ\Θ0.

We have to decide between H0 and H1. Let R denotes the reject region. A Test might have two types of mistake.
• Type I Error: Reject H0 when θ ∈ Θ0. Pθ(X ∈ R) for θ ∈ Θ0

• Type II Error: Accept H0 when θ ∈ Θ1. Pθ(X ∈ Rc) for θ ∈ Θ1

In this notes, we will use φ to denote power function for a hypothesis test, i.e.
β(θ) = Pθ(X ∈ R) (17)

When θ ∈ Θ0, then β(θ) = P(Type I Error). If θ ∈ Θ1, then β(θ) = 1 − P(Type II Error)

Definition 1.14. For α ∈ [0, 1], a test with power function β(θ) is a size α test if
sup

θ∈Θ0

β(θ) = α,

is a level α test if
sup

θ∈Θ0

β(θ) ≤ α

Definition 1.15. A test is unbiased if β(θ′) ≥ β(θ′′) for all θ′ ∈ Θ1 and θ′′ ∈ Θ0. A test is consistent if
lim

n→∞
β(θ) = 1, ∀θ ∈ Θ1

Definition 1.16. Let C be a class of tests. A test in class C with power function β(θ) is a uniformly most powerful
(UMP) class C test if β(θ) ≥ g(θ) for every θ ∈ Θ1 and every g(θ) that is a power function of a test in class C.
Generally we take C as the class of all level α test.

Theorem 1.17 (Neyman-Pearson Lemma). Consider testing H0 : θ = θ0 versus H1 : θ = θ1, where the pdf or pmf
corresponding to θi is f(x|θi), i = 0, 1. Then

R = {x : f(x|θ1) > kf(x|θ)}
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for some k ≥ 0 and α = Pθ0(X ∈ R) is a UMP level α test.

Definition 1.18 (p-value). A p-value p(X) is a test statistic satisfying 0 ≤ p(x) ≤ 1 for every sample point x. Small
values of p(X) give evidence that H1 is true. A p-value is valid if, for every θ ∈ Θ0 and every 0 ≤ α ≤ 1,

Pθ(p(X) ≤ α) ≤ α (18)

If p(X) is a valid p-value, then it is easy to construct a level α test based on this statistics. We rejects H0 if and only
if p(X) ≤ α.

Theorem 1.19. Suppose that T (X) is a test statistic such that large values of T give evidence that H1 is true. For
each sample point x, define

p(x) = sup
θ∈Θ0

Pθ(T (X) ≥ T (x)) (19)

Then p(X) is a valid p-value.

Now, suppose that β is a parameter, and β̂ is an estimator of β. Moreover, we assume that β̂ is consistent and
asymptotically normal, i.e.

β̂
p−→ β,

√
n(β̂ − β) d−→ N(0, σ2)

Also, suppose that σ̂2 p−→ σ2 is an estimator for asymptotical variance. Now we want to test the hypothesis: H0 : β = c,
where c is a constant. To this end, we can employ t-test:

T = β̂ − c

se(β̂)
= β̂ − c

σ̂/
√

n
(20)

Then under the null, T is asymptotically normal since by Slutsky’s theorem, we have
β̂ − c

σ̂/
√

n
= 1

σ̂

√
n(β̂ − β) d−→ N(0, 1) (21)

Then let the rejection region be
R := {|T | ≥ zα/2}, zα/2 := Φ−1(1 − α/2)

where Φ(x) is standard normal cdf. Also, we can construct confidence interval by test inversion:

CI1−α =
[
β̂ − zα/2se(β̂), β̂ + zα/2se(β̂)

]
(22)

Exercise. To be completed.

1.9 Wald’s Test
1.10 Introduction to Bayesian Statistics
1.11 Some Exercise

2 Causal Inference and Potential Outcomes
2.1 Potential Outcomes Model

We denote xi the treatment status, i.e. xi = 1 implies the individual is treated and xi = 0 indicates the individual
is not treated. Also, the out come yi(1) is "the outcome of the ith individual had she received the treatment. Therefore,
for each i, we have three random variables, (xi, yi(1), yi(1)).

Definition 2.1. Individual treatment effect (ITE):
τi = yi(1) − yi(0)

Average treatment effect (ATE):
τATE = E[τi] = E[yi(1) − yi(0)]

Treatment effect on the treated (ATT):
τATT = E[τi|xi = 1] = E[yi(1) − yi(0)|xi = 1]

Treatment effect on the untreated (ATU):
τATU = E[τi|xi = 0] = E[yi(1) − yi(0)|xi = 0]

We can always write yi as
yi = yi(1)1{xi=1} + yi(0)1{xi=0} = xiyi(1) + (1 − xi)yi(0) (23)

In words, we will never be able to observe the two potential outcomes simultaneously for any individual.
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2.2 Randomized Controlled Trials
Definition 2.2 (Missing completely at random; independent treatment). The potential outcomes are said to be missing
completely at random, if

xi ⊥⊥ (yi(1), yi(0)) (24)

It means the treatment status is independent of the potential outcomes. And therefore two individuals with different
treatment status should not differ systematically. This is a very strong assumption. But there is a special case that we
believe this assumption holds: randomized controlled trials (RCT).

In an RCT, a sample of units are randomized into two groups, the treatment group and the control group. Then
individuals who are in the treatment group will be exposed to the treatment, while those in the control group are not.
Due to the randomization of treatment, it is plausible to believe that treatment assignment is independent of the potential
outcomes, and hence this assumption holds.

How this assumption will help to identify the treatment effects? Consider the ATE:
τAT E = E[yi(1) − yi(0)] = E[yi(1)] − E[yi(0)] (25)

Since the treatment is independent of the potential outcomes, then
E[yi(1)] = E[yi(1)|xi = 1] = E[yi|xi = 1] (26)

Similarly, E[yi(0)] = E[yi|xi = 0]. Hence

Proposition 2.3. Under the independent treatment assumption, the ATE is identified by
τAT E = E[yi(1) − yi(0)] = E[yi|xi = 1] − E[yi|xi = 0] (27)

Now we re-write the potential outcomes into an expectation component and an error term:
yi(1) = E[yi(1)] + yi(1) − E[yi(1)]︸ ︷︷ ︸

ui(1)

, yi(0) = E[yi(0)] + yi(0) − E[yi(0)]︸ ︷︷ ︸
ui(0)

(28)

Then
yi = xiyi(1) + (1 − xi)yi(0)

= xi(E[yi(1)] + ui(1)) + (1 − xi)(E[yi(0)] + ui(0))
= E[yi(0)] + xi(E[yi(1)] − E[yi(0)]) + xiui(1) + (1 − xi)ui(0)
= β0 + β1xi + ui

(29)

Then under the independent treatment assumption, we have the regression expression, where β0 = E[yi(0)], β1 = τAT E

and E[ui|xi] = 0. The OLS estimators are

β̂0 = 1
n0

n∑
i=1

yi1{xi=0}, β̂1 = 1
n1

n∑
i=1

yi1{xi=1} − 1
n0

n∑
i=1

yi1{xi=0} (30)

where n1 =
∑n

i=1 xi is the size of the treatment group, and n0 =
∑n

i=1(1 − xi) is the size of the control group. Also we
can re-write them as

β̂0 = n

n0

1
n

n∑
i=1

yi(1 − xi) = n

n0

1
n

n∑
i=1

yi(0)(1 − xi)

Note that by LLN
n

n0

p−→ 1
P(xi = 0)

and
1
n

n∑
i=1

yi(0)(1 − xi)
p−→ E[yi(0)(1 − xi)] = E[yi(0)]E[1 − xi] = E[yi(0)]P(xi = 0)

Hence
β̂0

p−→ β0 = E[yi(0)]
Also

n

n1

1
n

n∑
i=1

yi1{xi=1}
p−→ 1

P(xi = 1)E[yi(1)]P(xi = 1) = E[yi(1)]

Hence
β̂1

p−→ β1 = E[yi(1)] − E[yi(0)] = τAT E

2.3 Selection Bias
What if we don’t assume the independent assumption? Then β̂1 is consistent for

β̂1
p−→ E[yi(1)|xi = 1] − E[yi(0)|xi = 0]

Without the independent assumption, we can not pull out ATE from the conditional expectation, but we have
E[yi(1)|xi = 1] − E[yi(0)|xi = 1] = E[yi(1)|xi = 1] − E[yi(0)|xi = 1]︸ ︷︷ ︸

τAT T

+E[yi(0)|xi = 1] − E[yi(0)|xi = 0]︸ ︷︷ ︸
selection bias
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3 Linear Regression
Definition 3.1 (Missing at random; conditional independence; selection on observables). The potential outcomes are said
to be missing at random (or, alternatively, the treatment assignment satisfies the selection on observables assumption),
if

xi ⊥⊥ (yi(1), yi(0))|wi (31)
where wi is some characteristics of each individual that can be observed by researcher.

Then we have
yi(1) = E[yi(1)|wi]︸ ︷︷ ︸

g1(wi)

+ui(1), yi(0) = E[yi(0)|wi]︸ ︷︷ ︸
g0(wi)

+ui(0) (32)

where ui(1) = yi(1) − g1(wi) and ui(0) = yi(0) − g0(wi). Then
yi = g0(wi) + xi(g1(wi) − g0(wi)) + xiui(1) + (1 − xi)ui(0)︸ ︷︷ ︸

ui

(33)

We have to make another very strong assumption:
g1(wi) = E[yi(1)] + w⊤

i δ, g0(wi) = E[yi(0)] + w⊤
i δ (34)

Then the outcome variable is
yi = E[yi(0)] + w⊤

i δ + xi

(
E[yi(1)] + w⊤

i δ − E[yi(0)] − w⊤
i δ
)

+ ui = E[yi(0)] + xiτAT E + w⊤
i δ + ui (35)

3.1 Algebraic Properties
Model:

yi = x⊤
i β + ui (36)

we assume that E[ui] = 0 and E[uixi] = 0. The moment condition is
1
n

n∑
i=1

xi(yi − x⊤
i β̂) = 0 (37)

Standard algebra leads to

β̂ =
(

1
n

n∑
i=1

xix
⊤
i

)−1(
1
n

n∑
i=1

xiyi

)
(38)

Matrix form: β̂ = (X⊤X)−1X⊤y.

Definition 3.2 (Sum of squares, R-squared). Let ŷi = x⊤
i β̂. Define

TSS =
n∑

i=1
(yi − ȳ)2, ESS =

n∑
i=1

(ŷi − ȳ)2, SSR =
n∑

i=1
(yi − ŷ)2

We have TSS = ESS + SSR. A goodness-of-fit measure is the R-squared, which is defined as

R2 = ESS
TSS (39)

We often define projection matrix
Px = X(X ′X)−1X ′y, ŷ = Pxy (40)

It has following properties: (1) Px is symmetric. (2) Px is idempotent, i.e. PxPx = Px. (3) PxX = X.
Similarly, we can define Mx = I − Px, is called the annihilator or the residual maker. Then û = Mxy. It has following

properties: (1) Mx is symmetric (2) Mx is idempotent, i.e. MxMx = Mx (3) Mxû = û (4) MxPx = PxMx = 0.
Also, for any vector a ∈ Rn, ∥Pxa∥ ≤ ∥a∥, ∥Mxa∥ ≤ ∥a∥.

Theorem 3.3 (Frisch-Waugh-Lovell). Suppose that xi1 ∈ Rd1 , xi2 ∈ Rd2 for every i. And
yi = x⊤

i1β1 + x⊤
i2β2 + ui (41)

The estimated coefficient of xi2 in the regression of yi on xi1 and xi2 is given by
β̂2 = (X⊤

2 MX1X2)−1(X⊤
2 MX1y) = (X̆⊤

2 X̆2)−1(X̆⊤
2 y̆) (42)

where X̆2 and y̆ are the residuals obtained from regression xi2 and yi on xi1, respectively.

Proof. Consider
y = X1β̂1 + X2β̂2 + û

Then pre-multiply MX1 at BHS,
MX1y = 0 + MX1X2β̂2 + MX1 û ⇒ MX1y − MX1X2β̂2 = û
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Then, multiply X⊤
2 at BHS

X⊤
2 MX1y − X⊤

2 MX1X2β̂2 = X⊤
2 û = 0 ⇒ β̂2 = (X⊤

2 MX1X2)−1(X⊤
2 MX1y)

A simple, but useful application of this is, consider xi = (zi, 1). Then run the regression, what will we get?

3.2 Large Sample Properties
Note that

β̂ =
(

1
n

n∑
i=1

xix
⊤
i

)−1(
1
n

n∑
i=1

xiyi

)
= β +

(
1
n

n∑
i=1

xix
⊤
i

)−1(
1
n

n∑
i=1

xiui

)
(43)

We first make an assumption on the data generating process.
(i) xi has a finite second moments, E[|xi|2] < ∞. And the matrix E[xix

⊤
i ] is invertible.

(ii) The error term ui is mean-zero, E[ui] = 0. And it has finite variance, also uncorrelated with x: E[xiui] = 0

Proposition 3.4. Under those assumptions:
1
n

n∑
i=1

xix
⊤
i

p−→ E[xix
⊤
i ], P

(
1
n

n∑
i=1

xix
⊤
i is non-singular

)
→ 1 (44)

Also,
1
n

n∑
i=1

xiui
p−→ 0

Hence
β̂

p−→ β, β̂ = β + op(1) (45)
If we further assume xi and ui has finite fourth moments, and E[xix

⊤
i u2

i ] is non-singular, then
√

n(β̂ − β) d−→ N(0, V ), V = (E[xixi])−1(E[xix
⊤
i u2

i ])(E[xixi])−1 (46)

3.3 Standard Error
The challenge is to estimate E[xix

⊤
i u2

i ], since it involves unknown ui. Now consider
1
n

n∑
i=1

xix
⊤
i û2

i , ûi = yi − x⊤
i β

We can not apply LLN here since ûi are not i.i.d. Hence we have to decompose it first.
û2

i − u2
i = (ûi − ui)(ûi + ui), ûi − ui = x⊤

i (β − β̂) ⇒ û2
i = u2

i + x⊤
i (β − β̂)(yi − x⊤

i β̂ + ui)
Hence

1
n

n∑
i=1

xix
⊤
i û2

i = 1
n

n∑
i=1

xix
⊤
i u2

i + 1
n

n∑
i=1

xix
⊤
i (yi + ui)x⊤

i (β − β̂) − 1
n

n∑
i=1

xix
⊤
i x⊤

i β̂x⊤
i (β − β̂) (47)

Then we know that
1
n

n∑
i=1

xix
⊤
i u2

i
p−→ E[xix

⊤
i u2

i ],
∥∥∥∥∥ 1

n

n∑
i=1

xix
⊤
i (yi + ui)x⊤

i (β − β̂)
∥∥∥∥∥ ≤ ∥β − β̂∥

∥∥∥∥∥ 1
n

n∑
i=1

xix
⊤
i (yi + ui)

∥∥∥∥∥ (48)

Since β − β̂
p−→ 0, and 1

n

∑n
i=1 xix

⊤
i (yi + ui)

p−→ E[xix
⊤
i x⊤

i (yi + ui)]. Hence, by op(1)Op(1) = op(1), we know that∥∥∥∥∥ 1
n

n∑
i=1

xix
⊤
i (yi + ui)x⊤

i (β − β̂)
∥∥∥∥∥ p−→ 0 (49)

Moreover, impose β − β̂ = Op( 1√
n

), we have∥∥∥∥∥ 1
n

n∑
i=1

xix
⊤
i (yi + ui)x⊤

i (β − β̂)
∥∥∥∥∥ = Op( 1√

n
) = op(1) (50)

Similarly, ∥∥∥∥∥ 1
n

n∑
i=1

xix
⊤
i x⊤

i β̂x⊤
i (β − β̂)

∥∥∥∥∥ ≤ ∥β − β̂∥∥β̂∥ 1
n

n∑
i=1

∥xi∥4 = Op( 1√
n

) = op(1)

Hence
1
n

n∑
i=1

xix
⊤
i û2

i
p−→ E[xix

⊤
i u2

i ]

Then

V̂ =
(

1
n

n∑
i=1

xix
⊤
i

)−1 [
1
n

n∑
i=1

xix
⊤
i û2

i

](
1
n

n∑
i=1

xix
⊤
i

)−1
p−→ V (51)
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Sometimes we also write
β̂

a∼ N(β,
V̂

n
) (52)

The standard error (or, more precisely, the variance estimator) we discussed above is widely known as the Huber-Eicker-
White standard error. We also call it HC0, where HC stands for “heteroskedasticity consistent. robust in Stata
corresponds to the original HC0 standard error. Compared to HC0, HC1 incorporates a degrees of freedom adjustment
of n/(n − d).

V̂HC1 =
(

1
n

n∑
i=1

xix
⊤
i

)−1 [
1

n − d

n∑
i=1

xix
⊤
i û2

i

](
1
n

n∑
i=1

xix
⊤
i

)−1

= n

n − d
V̂

V̂HC2 =
(

1
n

n∑
i=1

xix
⊤
i

)−1 [
1
n

n∑
i=1

xix
⊤
i

û2
i

1 − pii

](
1
n

n∑
i=1

xix
⊤
i

)−1

, pii = x⊤
i (X ′X)−1xi,

V̂HC3 =
(

1
n

n∑
i=1

xix
⊤
i

)−1 [
1
n

n∑
i=1

xix
⊤
i

û2
i

(1 − pii)2

](
1
n

n∑
i=1

xix
⊤
i

)−1

V̂HC4 =
(

1
n

n∑
i=1

xix
⊤
i

)−1 [
1
n

n∑
i=1

xix
⊤
i

û2
i

(1 − pii)δi

](
1
n

n∑
i=1

xix
⊤
i

)−1

, δi = min
{

4,
npii

d

}
(53)

There are a lot of excercises to be done here
Exercise. Prove the Gauss-Markov Theorem

3.4 Hypothesis Testing
Consider general problem

H0 : Rβ = r (54)
Note that

√
n(β̂ − β) d−→ N(0, V ). Then under the null

√
n(Rβ̂ − Rβ) =

√
n(Rβ̂ − r) d−→ N(0, RV R′)

We consider the Wald’s statistic for this test:
n(Rβ̂ − r)′[RV R′]−1(Rβ̂ − r) d−→ χ2

k

4 Instrumental Variables
Previously, we assume that the covariates are uncorrelated with the error term. In some cases, however, it is not

possible to control for certain information, such as intellectual ability, and hence the correlation Cov(xi, ui) ̸= 0 cannot
be removed. Instead, we assume there is another variable zi, known as the instrument, such that it is uncorrelated with
the error term: Cov(zi, ui) = 0.

Assumption (Linear IV model). Let zi be an instrumental variable. Then (i) Cov(zi, ui) = 0 and (ii) Cov(zi, xi) ̸= 0.
Still, we motivate estimation by moment conditions:

0 = E[ziui] = E[zi(yi − β0 − β1xi)]
0 = E[ui] = E[yi − β0 − β1xi]

Then, for estimation, we consider their sample analogues

0 = 1
n

n∑
i=1

zi(yi − β0 − β1xi)

0 = 1
n

n∑
i=1

(yi − β0 − β1xi)

The solution to those systems is
β̂1 = zy − z̄ · ȳ

zx − z̄ · x̄
(55)

where x̄ is sample averages. Actually it can be written as a ratio of two regression estimates:

β̂1 =
( 1

n

∑n
i=1(yi − ȳ)(zi − z̄)

1
n

∑n
i=1(zi − z̄)2

)/( 1
n

∑n
i=1(xi − x̄)(zi − z̄)

1
n

∑n
i=1(zi − z̄)2

)
(56)

That is, to obtain β̂1, we can first regress yi on the instrument (and an intercept), then regress the endogenous variable xi

on the instrument (and an intercept), and finally take the ratio of the two slope estimates. Consider the linear projection:
xi = π0 + ziπ1 + vi

By construction, the error term vi will be uncorrelated with the instrument. Then
yi = β0 + β1π0 + ziβ1π1 + ui + β1vi

Note that the product β1π1 can be consistently estimated by a regression of yi on the instrument zi. This regression is
known as the reduced-form regression for yi. π1 can also be consistently estimated by regression xi on the instrument,
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this regression is known as the reduced-form regression for xi, or the first-stage regression.
From the first regression, we can save the predicted x̂i = π̂0 + ziπ̂1. Then we can run a second stage regression of yi

on predicted values x̂i, and we will obtain exactly the same estimate β̂1.
yi = β0 + xiβ1 + ui = β0 + (π0 + ziπ1)β1 + ui + β1vi

which means a consistent estimate of β1 can be obtained by regressing yi on π0 + ziπ1. Then one can write done the
second stage regression

β̃1 =
1
n

∑n
i=1(yi − ȳ)(x̂i − ¯̂x)

1
n

∑n
i=1(x̂i − ¯̂x)2

Note that x̂i − ¯̂x = (zi − z̄)π̂1. Then one can prove that β̃1 = β̂1.
Loosely speaking, a control function is a random quantity, which can be added to the model to mitigate the endogeneity

issue. To discuss the control function perspective, we start from the structural equation and the first stage:
yi = β0 + β1xi + ui, xi = π0 + π1zi + vi

Then we consider a linear projection of the error terms, and in particular, we write
ui = θ1vi + εi

By construction, εi is uncorrelated with vi. Moreover, εi = ui − θ1vi is uncorrelated with zi. Hence εi is uncorrelated
with xi. Intuitively, θ1vi is the part of ui that is correlated to xi, and εi is the part that uncorrelate with xi. If we write

yi = β0 + β1xi + θ1vi + εi

then vi will be a valid control function. Including this extra regressor will solve the endogeneity issue. For estimation,
the control function approach suggests to estimate the first stage, and save the residuals v̂i = xi − π̂0 − π̂1zi. Then in the
next step, we run a regression of yi on xi and the first stage residual v̂i.

Exercise. Show that the control function approach leads to the same estimate. That is, assume we obtained the following
fitted regression equation:

β̆0 + β̆1xi + θ̆1v̂1
Show that β̆1 = β̂1.

Proof. Note that by partition regression formula, β̆1 is obtained by regressing yi on x̃i, where x̃i is the residual
obtained from regressing xi on v̂i. Note that

xi = π̂0 + π̂1zi + v̂i

Also
xi = γ̂0 + γ̂1v̂i + x̃i

Then it must be γ̂0 = π̂0 + π̂1z̄ and γ̂1 = 1. As a result, x̃i = π̂1(zi − z̄). Since those sample mean are all 0, then
regress yi on x̃i will give us

β̆1 =
∑n

i=1 yi(zi − z̄)π̂1∑n
i=1(zi − z̄)2π̂2

1
=
∑n

i=1 yi(zi − z̄)∑n
i=1(zi − z̄)2 · 1

π̂1
= β̂1

4.1 Local Average Treatment Effect
We can re-write yi = xiyi(1) + (1 − xi)yi(0) as

yi = yi(0) + τixi, τi = yi(1) − yi(0)
where τi is the individual treatment effect. Also yi(1) = E[yi(1)] + ui(1) and yi(0) = E[yi(0)] + ui(0), then

yi = E[yi(0)]︸ ︷︷ ︸
β0

+xi τAT E︸ ︷︷ ︸
β1

+ ui(0) + (ui(1) − ui(0))xi︸ ︷︷ ︸ui

Let zi be some instrument. If xi is independent of (ui(1), ui(0))⊤, then xi will be uncorrelated with ui, and hence the
ATE can be identified. But in the second case, xi is correlated with (ui(0), ui(1)).

Note that even when an instrument is exogenously determined, the 2SLS may not identify the ATE.
(Assumption) Potential outcomes IV model: Let zi be the binary instrument, xi(1) and xi(0) be the two potential

treatments, and yi(1) and yi(0) be the two potential outcomes.
1. zi is independent of the potential treatments and the potential outcomets:

zi ⊥⊥ (xi(1), xi(0), yi(1), yi(0))⊤

2. The instrument is relevant
P(xi(1) = 1) ̸= P(xi(0) = 1)

3. Either xi(1) ≥ xi(0) for all individuals or xi(1) ≤ xi(0) for all individuals (this is known as the monotonicity
assumption).

The second assumption is actually
Cov(xi, zi) = P(xizi = 1) − P(xi = 1)P(zi = 1) = (P[xi = 1|zi = 1] − P(zi = 1))P(zi = 1)

Note that P(xi = 1|zi = 1) = P(xi(1) = 1|zi = 1) = P(xi(1) = 1). Similarly,
P(xi = 1) = P(xi(1) = 1)P(zi = 1) + P(xi(0) = 1)P(zi = 0)
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Hence
Cov(xi, zi) = (P[xi(1) = 1] − P[xi(1) = 1]P[zi = 1] − P[xi(0) = 1]P[zi = 0])P[zi = 1]

This is not zero as long as P(xi(1) = 1) ̸= P(xi(0) = 1) and 0 < P(zi = 1) < 1.
In the following we will discuss what the 2SLS identifies when both the endogenous variable and the instrument are

binary:
xi = xi(1)zi + xi(0)(1 − zi)

Without loss of generality, we will assume that xi(1) ≥ xi(0), which means the instrument will encourage treatment
take-up. Recall that the slope estimate from the 2SLS takes the form. We have

β̂1 =
1
n

∑n
i=1(yi − ȳ)(zi − z̄)

1
n

∑n
i=1(xi − x̄)(zi − z̄)

p−→ Cov(yi, zi)
Cov(xi, zi)

Theorem 4.1 (2SLS identification; local average treatment effect). Consider the setting of assumptions above with
xi(1) ≥ xi(0). Then the 2SLS slope estimator is consistent for

β̂1
p−→ E[yi(1) − yi(0)|xi(1) > xi(0)]

which is the treatment effect for the subpopulation with xi(1) > xi(0). This is also known as the local average
treatment effect (LATE).

4.2 Large-Sample Properties of the 2SLS and Weak Instruments
We start from two equations:

yi = β0 + xiβ1 + ui, xi = π0 + ziπ1 + vi

Hence
yi = β0 + β1π0︸ ︷︷ ︸

γ0

+zi β1π1︸︷︷︸
γ1

+ ui + β1vi︸ ︷︷ ︸
ηi

We can re-write the 2SLS estimator as
√

n(β̂1 − β1) =
√

n

(
γ̂1

π̂1
− γ1

π1

)
= 1

π̂1

√
n(γ̂1 − γ1) − γ1

π1π̂1

√
n(π̂1 − π1)

= 1
π̂1

√
n(γ̂1 − γ1 − β1(π̂1 − π1))

= 1
π1

√
n(γ̂1 − γ1 − β1(π̂1 − π1)) + op(1)

where the last step follows from π1 ̸= 0, |π̂1 − π1| = op(1) and that
√

n(γ̂1 − γ1 − β1(π̂1 − π1) = Op(1)
To be completed in the future

5 Causality
5.1 Model
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