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Some notes may deviate from what we learned in course. Use at your own risk.

1 Optimization

An optimization problem looks like:

min
x∈S

f (x) (1)

f is called objective function. The components of x ∈ Rn are the decision variables. S is
the constraint set or feasible set. x∗ = argminx∈S f (x) is called the minimizer.

Rather than writing in argmax/argmin form, I’ll write the optimization into the fol-
lowing form:

max
x

f (x)

s.t. gi(x) = 0, i ∈ I
hj(x) ≥ 0, j ∈ J

(2)

1.1 Linear Programming

A function l(x) for x ∈ Rn is called linear if l(x) is a linear combination of the compo-
nents x1, · · · , xn. That is, we can find a vector c ∈ Rn such that l(x) = cTx. Property:
l(αx) = αl(x) and l(x + y) = l(x) + l(y) for any x, y ∈ Rn and α ∈ R.

The graph of a linear function l(x) = cTx, x ∈ Rn is an n−dimensional plane living
in Rn+1. For example, consider x ∈ R, then l(x) = cx is a line in R2.

Definition 1 (Level Sets) We call {x|g(x) = α} the α−level set of function g(x).

Definition 2 (Hyperplane) We call {x|cTx = α}, c ̸= 0 a hyperplane, which is a n − 1 di-
mensional hyperplanes in Rn.

Definition 3 (Half-Space) We call {x|cTx ≥ α}, c ̸= 0 a half space. c is the outer-norm of
the half-space.
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1.1 Linear Programming 1 OPTIMIZATION

Standard form of LP:
max

x
cTx

s.t. Ax = b
x ≥ 0

(3)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn. The constraint x ≥ 0 denotes xi ≥ 0 for all i =
1, · · · , n.

Now we might have a question, what if the given problem is not the standard form?
For example, consider the following optimization problem:

max
x1,x2

c1x1 + c2x2

s.t. 2x1 + x2 ≤ 12
(4)

Then we can introduce four non-negative variables: y1, z1, y2, z2, such that

x1 = y1 − z1, x2 = y2 − z2

Hence, we can rewrite the optimization problem (4) into the following form:

max
y1,y2,z1,z2

c1y1 + c2y2 − c1z1 − c2z2

s.t. 2y1 + y2 − 2z1 − z2 ≤ 12
y1, y2, z1, z2 ≥ 0

(5)

Furthermore, introduce w ≥ 0, then

max
y1,y2,z1,z2,w

c1y1 + c2y2 − c1z1 − c2z2

s.t. 2y1 + y2 − 2z1 − z2 + w = 12
y1, y2, z1, z2, w ≥ 0

(6)

That is, we can add more decision variables into the optimization problem to convert
it into standard form. These additional variables are called surplus and slack variables.
Summary of procedures:

1. Introduce non-negative variables (x ≥ 0 in standard form)

2. Convert inequalities into equalities. Ax ≤ b can be converted into Ax + y = b for
y ≥ 0. (Ax ≥ b can be written as Ax = b + y).

Skip this if you want. Simplex Method. For more details, take a look at chapter 2 and
chapter 3 of [1]

Definition 4 A point x in a convex set C is said to be an extreme point of C if there are no two
distinct points x1, x2 ∈ C such that x = αx1 + (1 − α)x2 for some α ∈ (0, 1).

Definition 5 (Polytope, Polyhedron) A set which can be expressed as the intersection of a
finite number of closed half spaces is said to be a convex polytope. A nonempty bounded polytope
is called a polyhedron.
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1.2 Non-linear Optimization 1 OPTIMIZATION

1.2 Non-linear Optimization

Example 1 (Markowitz Mean-Variance Optimization) Let xi be the proportion of the port-
folio invested in asset i, and µi be the expected return of asset i. Moreover, let x and µ denote
corresponding vector of xi and µi. Σ is the covariance matrix of stocks, i.e.

Σ =


σ2

1 ρ12σ1σ2 · · · ρ1nσ1σn
ρ21σ2σ1 σ2

2 · · · ρ2nσ2σn
...

...
...

ρn1σnσ1 ρn2σnσ2 · · · σ2
n


For simplicity, we denote

e = (1, 1, · · · , 1)T

Therefore, the portfolio has expectation and variance:

E[x] = µTx Var[x] = xTΣx

The optimization problem is (we allow short-sale here.)

min
x

xTΣx

s.t. µTx ≥ R

eTx = 1

(7)

Solution: Now we will use matrix calculus and KKT to help us to solve this problem:
The Lagrangian is

L = xTΣx + λ(eTx − 1) + ν(R − µTx) (8)

where λ, ν are Lagrange multipliers. We have

∂L
∂x

= 2Σx + λe − ν1µ = 0

Hence

x∗ = Σ−1
(

1
2

νµ − 1
2

λe
)

If µTx > R, then ν = 0 due to complementary slackness condition. However, since Σ is
positive semi-definite, then so does Σ−1. ν = 0 will lead to x∗ ≤ 0, which is not feasible.
So µTx = R.

Therefore, we will get the following equation system from KKT:2Σ e µ
eT 0 0
µT 0 0

x
λ
ν

 =

0
1
R

 (9)

Solving this system we get the optimal x∗:
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1.2 Non-linear Optimization 1 OPTIMIZATION

Remark 1 When non-negative constraint is added, there is no closed-form solution for this prob-
lem.

There are some (numerical) methods to handle non-linear optimization problem:

• (Steepest) descent method (calculus based)

• Newton’s method (calculus based)

• Interior point methods

• Sequential quadratic programming

1.2.1 Gradient-Descent

The steepest descent direction for objective function is −∇ f (x), i.e. negative gradient
direction. Steps:

1. Start with location that is a guess of the minimizer: x0

2. Move a certain distance in −∇ f (x0), call it x1.

x1 = x0 − α∇ f (x0) (10)

3. Iterate by
xk = xk−1 − α∇ f (xk−1) (11)

actually, α can be varying.

1.2.2 Newton’s Method

Newton’s method is to solve root for a (nonlinear) function g(x). Recall the first order
condition is just ∇ f (x) = 0. So we can use Newton’s method to find root for gradient,
therefore it might be possible minimum/maximum of objective function.

Algorithm for find root for g(x) (univariate):

1. Start with x0

2. Iterate

xk+1 = xk − g(xk)

g′(xk)
(12)

3. Stop iterations if |g(xk)| is small or |xk − xk−1| is small.

For univariate optimization problem: minx f (x):

1. Start with x0
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1.2 Non-linear Optimization 1 OPTIMIZATION

2. Iterate

xk+1 = xk − f ′(xk)

f ′′(xk)
(13)

3. Stop iterations if | f ′(xk)| is small or |xk − xk−1| is small.

In multivariate case, first order derivative is gradient, second order derivative is Hessian
matrix. Therefore, if we want to find root for G(x), x ∈ Rn, we can do iteration:

xk+1 = xk − [∇G(xk)]−1G(xk) (14)

For minx∈Rn F(x), we have

xk+1 = xk − [∇2F(xk)]−1∇F(xk) (15)

where

∇2F(x) =

(
∂2F

∂xi∂j

)
ij

=


∂2F
∂x2

1

∂2F
∂x1∂x2

· · · ∂2F
∂x1∂xn

∂2F
∂x2∂x1

∂2F
∂x2

2
· · · ∂2F

∂x2∂xn
...

...
...

∂2F
∂xn∂x1

∂2F
∂xn∂x2

· · · ∂2F
∂x2

n


I wrote a tutorial for gradient descent and Newton’s method. One can find it at Tutorial.

Example 2 (IRR) (Find definition of IRR at your corporate finance textbook). The IRR of a bond
is called its yield. Suppose that a non-callable bond has a maturity of 4 years. The par(face) value
is 1000 and the price today is 900. The coupon rate is 10%, annually. Calculate the yield of this
bond.

Solution: We just have to calculate root for following function:

g(r) =
100

1 + r
+

100
(1 + r)2 +

100
(1 + r)3 +

1100
(1 + r)4 − 900

Choose one programming language to do it!
The Quadratic Programming(QP) problem is a simple nonlinear constrained opti-

mization problem. Standard form of QP:

min
x

1
2

xTQx + cTx

s.t. Ax = b
x ≥ 0

(16)

where Q ∈ Rn×n, A ∈ Rm×n.

5

https://benshui.github.io/code/


2 DISCRETE TIME OPTION PRICING

1.2.3 Interior Point Method

2 Discrete Time Option Pricing

2.1 Introduction to Derivatives

A derivative is a financial instrument whose value depends on the value of some under-
lying asset or assets (in the primary market). In other words, the value of the derivative
is derived from that of the underlying asset or assets. Derivatives are also called con-
tingent claims because their value is contingent on the value of an underlying asset or
assets.

Some examples of derivatives: Options, Forward Contracts, Futures, Swaps.
Forward Contract: holder of the long position promises to pay the forward price F

in exchange for one unit of the asset (eg, a ton of oranges) from the holder of the short
position at time T. The forward contract does not cost anything at time 0 to either party.
The payoff of the forward contract is ST − F.

2.2 Binomial Model

Time is discrete: t = 0, 1, 2, · · · . Two assets:

• Bond: riskless asset. We denote Bt = (1 + r0)
t = Rt the value of one unit of bond

at time t.

• Stock: risky asset. We denote St the value of one share of stock at time t. St =
St−1ξt, where {ξt}T

t=1 are i.i.d with

P(ξt = u) = p, P(ξt = d) = 1 − p, for 0 < p < 1

No arbitrage condition: 0 < d < R < u. (Prove that).
Recombining tree has T + 1 nodes while non-recombining tree has 2T nodes.

2.3 European Option: Pricing and Hedging

The final payoff of European Call option is X = max(ST − K, 0).

Definition 6 A trading strategy in the binomial model is a sequence of pairs of random vari-
ables:

φ = {(∆t, βt) : t = 1, 2, · · · , T} (17)

where ∆t = # of shares of stock held over (t − 1, t], and βt = # units of bond held over (t − 1, t].
∆t, βt are real-valued functions of S0, · · · , St−1, which are non-anticipating. The value of strategy
at time t is given by

Vt(φ) = ∆tSt + βtBt (18)
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2.4 Risk-Neutral Probability 2 DISCRETE TIME OPTION PRICING

Definition 7 (Self-Financing Trading Strategy) If {(∆t, βt)} satisfies

∆tSt + βtBt = ∆t+1St + βt+1Bt (19)

Then we call this trading strategy is self-financing.

For a European derivative with final payoff X, a replicating strategy(or hedging strategy)
is φ = {(∆t, βt)} such that VT(φ) = X.

Definition 8 (Arbitrage) An arbitrage opportunity is an opportunity for a risk free profit, i.e.,
one can start with no money and invest (using borrowing and short selling as needed) in such a
way that ones final wealth is always non-negative and is strictly positive with positive probability.

Theorem 1 If φ is a replicating strategy for a European derivative with final payoff X, then the
(unique) arbitrage-free initial price for this derivative is V0(φ).

Steps: See the following slide:

Figure 1: Binomial Model Dynamic Replicating Formulas

2.4 Risk-Neutral Probability

Let
p∗ =

R − d
u − d

(20)

Then we must have
CT−1,j =

1
R

E∗[CT|S0, · · · , ST−1] (21)

The deep thing behind risk neutral probability is the FTAP(Fundamental Theorem of
Asset Pricing). We will take about it in Spring quarter (MGTF411).
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2.5 American Option 3 MONTE CARLO METHOD

2.5 American Option

For American type derivatives, let Zt be the payoff value at time t = 0, 1, · · · , T. Then
Zt ∈ Ft, which is non-anticipating(adapted). For example, American put option has
payoff Zt = (K − St)+.

Definition 9 (Minimal Superhedging Strategy) A self-financing strategy φ such that Vt(φ) ≥
Zt for t = 0, · · · , T and V0(φ) is as small as possible.

Let Pt be the minimal amount needed at time t to cover the payoff value of the option at
times t, · · · , T. Good stopping time for buyer is τ = min(t : Pt = Zt).

Note: Vt(φ∗) = Pt, for 0 ≤ t ≤ τ∗. But we only know Vt(φ∗) ≥ Pt for t ≥ τ∗.

Figure 2: Binomial Model Dynamic Replicating Formulas for American Option

Remark: When we are asked to calculate superhedging portfolio, please don’t forget
to write down δ.

3 Monte Carlo Method

The European derivative has final payoff:

X = F({St : 0 ≤ t ≤ T}) (22)
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3.1 Static Monte Carlo 3 MONTE CARLO METHOD

Assume E∗[|X|] < ∞. Then the unique arbitrage free initial price for a European deriva-
tive is given by

V0 = e−rTE∗[X] = e−rTE∗[F(St : 0 ≤ t ≤ T)] (23)

There are two aspects to approximating the value V0:

1. (Static Monte Carlo): Given independent samples X(1), · · · , X(n) of random vari-
able X and then

V0 = e−rTE∗[X] ≈ e−rT 1
n

σn
i=1X(i) (24)

2. (Dynamic Monte Carlo): If X is path dependent, then we need to approximate
F({St : 0 ≤ t ≤ T}) by F(St0 , · · · , Stn) for 0 = t0 < t1 < · · · < tm = T, tj =

j∆t, ∆t = T/m. Given independent samples (S(i)
t0

, · · · , S(i)
tn
), i = 1, · · · , n, then

V0 ≈ e−rT 1
n

n

∑
i=1

F̃(S(i)
t0

, · · · , S(i)
tn
) (25)

3.1 Static Monte Carlo

Theorem 2 (SLLN) Suppose that X1, · · · , Xn are i.i.d random variables(provided finite second
moments). Then we must have

1
n

n

∑
i=1

Xi → E[X1], a.s. as n → ∞ (26)

LetX = (X(1), · · · , X(n)) be a random vector, with independent and identically dis-
tributed components X(i) each given by distribution function FX. Then the sample mean
of X is

θ̂n(X) =
1
n

n

∑
i=1

X(i) (27)

• Unbiased:

E[θ̂n(X)] =
1
n

n

∑
i=1

E[X(i)] = E[X] (28)

• The variance of estimator is smaller than the variance of X

Var[θ̂n(X)] =
1
n2

n

∑
i=1

Var(X(i)) =
Var(X)

n
(29)

Note that by CLT,

Zn =
θ̂n(X)− θ√
Var(X)/n

→ N (0, 1) (30)
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3.2 Simulating Random Variables 3 MONTE CARLO METHOD

3.2 Simulating Random Variables

We have to use pseudo-random-sample generated by deterministic computes algorithms
as approximate random numbers. The core is to generate uniform distribution on [0, 1].
Steps:

1. Select a relative larger m.

2. Seed x0 ∈ {1, · · · , m}

3. xi+1 = axi + c ( mod m), where 0 < a < m, 0 ≤ c < m. Often take c = 0,
m prime, am−1 − 1 is a multiple of m but aj−1 − 1 is not a multiple of m, j =
1, · · · , m − 2.

4. ui+1 = xi+1/m.

3.3 Variance Reduction

Recall: For two random vairables X and Y, the covariance is

Cov(X, Y) = E[XY]− E[X]E[Y] (31)

The correlation between them is

Corr(X, Y) =
Cov(X, Y)√

Var(X)
√

Var(Y)
(32)

3.3.1 Antithetic Variables

Suppose that Y is a random variable and g is aa monotone function (either increasing or
decreasing). We are seeking to approximate θ = E[g(Y)] (assume g(Y) has finite mean).
The standard static Monte Carlo would approxiamate θ by sample mean:

θ̂ =
1
n

n

∑
i=1

g(Y(i))

where g(Y(i)) are i.i.d with same distribution of g(Y).
Key ideas of antithetic variables: instead of Y(i) i.i.d, we can use pairs of random vari-

ables (Y(i), Ỹ(i)) that are independent and i.i.d but Y(i) and Ỹ(i) are usually negatively
dependent and have same distribution as Y.

Given an antithetic sequence of pairs: {(Y(i), Ỹ(i))}n
i=1 that are i.i.d with Y(i) ∼ Ỹ(i) ∼

Y and Cov(Y(i), Ỹ(i)) < 0. Therefore

θ̂av =
1
2

[
1
n

n

∑
i=1

g(Y(i)) +
1
n

n

∑
i=1

g(Ỹ(i))

]
≈ θ (33)
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3.4 Greeks 3 MONTE CARLO METHOD

It has variance

Var(θ̂av) =
1

4n2

n

∑
i=1

Var(g(Y(i)) + g(Ỹ(i)))

=
Var(Y)

2n
+

1
2n

Cov(g(Y(1)), g(Ỹ(1))) < Var(θ̂2n) =
1
2

Var(θ̂n)

(34)

3.3.2 Importance Sampling

The standard Monte Carlo is particularly inefficient whenever the important values of
g(Y) occur with low probability (takes a large n to significantly sample these values).

Idea of importance sampling:

• Replace the probability density function for the distribution of Y by a density
whose samples are more likely to fall in the region of importance for g.

• Draw Monte Carlo samples from the new density, evaluate theses using g, and
weight these values appropriately to compensate for tilting the distribution of Y.

Suppose that Y has probability density function f . Then

θ = E[g(Y)] =
∫

R
g(y) f (y)dy (35)

Suppose that h is another probability density function which puts more weight on the
important regions for g, and which is positive whenever f is positive.

Then

θ = E f [g(Y)] =
∫

R
g(y)

f (y)
h(y)

h(y)dy = Eh[k(Y)] (36)

where k(y) = g(y) f (y)/h(y). And then

θ̂h
n =

1
n

n

∑
i=1

k(Y(i)) (37)

The variance of this estimation is

Var(θ̂h
n) =

Varh(k(Y))
n

=
1
n

[∫
R

g2(y)
(

f (y)
h(y)

)2

h(y)dy −
(∫

R
g(y) f (y)dy

)2
]

(38)

The optimal h is g(y) f (y)/
∫

g(z) f (z)dz. Not useful, but we can find a h close to g × f .

3.4 Greeks

Suppose that X = H(ST) with E∗[|X|] < ∞ and H "nice". The value of a hedging
strategy at time t when St = x is

V(t, x) = e−r(T−t)E∗[H(ST)|St = x] (39)

The sensitivity of this value to changes in x, t, σ are given by the Greeks:

∆t(X) =
∂V
∂x

, Γt(x) =
∂2V
∂x2 , θt(x) =

∂V
∂t

, Vt(x) =
∂V
∂σ

(40)
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3.5 Simulation of Sample Paths

A brief introduction of Stochastic Calculus:

Theorem 3 (Itô’s Lemma) Suppose that f (t, Wt) is a nice function, where Wt is a Brownian
Motion. Then

f (t, Wt) = f (0, W0) +
∫ t

0

∂ f
∂s

(s, Ws)ds +
∫ t

0

∂ f
∂x

(s, Ws)dWs +
1
2

∫ t

0

∂2 f
∂x2 (s, Ws)d(Ws)

2 (41)

The solution to SDE:
dSt = rStdt + σStdWt (42)

is
St = S0 exp{(r − 1

2
σ2)t + σWt} (43)

Let ∆t = T/N, tj = j∆t,j = 0, · · · , N. Then define

S̃tj = S̃tj−1 exp{σ
√

∆tZj + (r − 1
2

σ2)∆t} (44)

where Z1, · · · , ZN are i.i.d N (0, 1). We can approximate F(St, 0 ≤ t ≤ T) by F(S̃t, 0 ≤
t ≤ T). If X is path dependent, need to approximate X = F(St, 0 ≤ t ≤ T) by F̃(S̃tj , 0 ≤
j ≤ N).

3.6 Simulating Solution to a SDE

Itô diffusion:
dXt = µ(t, Xt)dt + σ(t, Xt)dWt (45)

Idea: ∆Xt ≈ µ(t, Xt)∆t + σ(t, Xt)∆Wt.

1. Euler Scheme: Fix N > 0, let ∆t = T/N and tj = j∆t, j = 0, 1, · · · , N. Recursely
define {

X̃tj = X̃tj−1 + µ(tj−1, X̃tj−1)∆t + σ(tj−1, X̃tj−1)
√

∆tZj

X̃0 = X0
(46)

where Zj, j = 1, · · · , N i.i.d N (0, 1).

Error estimates: If µ and σ satisfy for all x, y and s, t ∈ [0, T]

• |µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C1|x − y| (uniform)

4 Partial Differential Equations

References

[1] David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming. Vol. 2. Springer,
1984.
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Appendix A: Matrix Calculus

A.1 Scalar Function

Suppose that f (X) is a scalar function of matrix X (m × n). Then the total derivative of
f is

d f =
m

∑
i=1

∑
j=1

∂ f
∂Xij

dXij = tr

(
∂ f
∂X

T
dX

)
(47)

We can use this formula to find the derivative. Here are some properties:

1. d(X ± Y) = dX ± dY

2. d(XY) = (dX)Y + X(dY)

3. d(XT) = (dX)T

4. d(tr(X)) = tr(dX)

5. Inverse: dX−1 = −X−1(dX)X−1. Sketch of proof: Take differentiation at BHS of
XX−1 = I.

6. Determinant: d|X| = tr(X∗dX), where X∗ is the adjugate matrix of X. When X is
invertible, then d|X| = |X|tr(X−1dX).

7. d(X⊙Y) = dX⊙Y+X⊙dY, where ⊙ denotes element-wise product, (or Hadamard
product, etc.), i.e. (A ⊙ B)ij = (A)ij(B)ij

8. Element-wise Function: suppose that σ(X) := [σ(Xij)]. σ′(X) := [σ′(Xij)]. Then
dσ(X) = σ′(X)⊙ dX. For example:

X =

(
X11 X12
X21 X22

)
, d sin(X) =

(
cos X11dX11 cos X12dX12
cos X21dX21 cos X22dX22

)
= cos(X)⊙ dX

Some tricks for trace:

1. For scalar, a = tr(a)

2. tr(AT) = tr(A)

3. Linearity: tr(A ± B) = tr(A)± tr(B)

4. Multiplication: tr(AB) = BA, where A has the same size of BT.

5. tr(AT(B ⊙ C)) = tr((A ⊙ B)TC), where A, B, C has the same dimension.

Ok now let’s begin to look at some examples.

Example 3 Suppose that f = aTXb, where a is a m × 1 vector while b is a n × 1 vector. Find
∂ f
∂X
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Appendix B: Lagrange multiplier, KKT

B.1 Gradient
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