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1 Introduction

1.1 Basic Concepts in Bayesian Statistics

There are two basic inferences:

• MLE:
θ̂MLE = arg max

θ∈Θ
L(θ) = arg max

θ∈Θ
logL(θ)

where θ̂MLE is a statistics (i.e., a random variable), while the true parameter θ0 is a
constant.

• Bayesian approach:

p(θ|y) = p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

where p(θ|y) is a (conditional) distribution.

Then let’s recall the Bayesian rules:

• For events A and B:
P(A|B) = P(B|A)P(A)

P(B)

• For random variables X and Y,

pX|Y(x|y) =
pY|X(y|x)pX(x)

pY(y)

In Bayesian statistics, parameters are also considered as random variables. Suppose that
the econometrician observes data y from some sample Y ∈ Rn. The purpose of Bayesian
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analysis is to use the data y to update the prior belief of θ.

p(θ|y) = p(y|θ)p(θ)
p(y)

Here p(θ|y) is called posterior distribution. And p(y) is called marginal likelihood or
normalizing constant. p(θ) is called prior distribution. In addition, we define the hyper
parameters as coefficients that parameterize the prior and posterior distributions but
do not directly affect the likelihood. We denote λ0 as the prior hyper-parameters and
λ1 = λ1(y, λ0) as the posterior hyper-parameters. Then the prior is p(θ; λ0), the posterior
is

p(θ|y; λ1) = p(θ|y; λ0)

and the marginal likelihood is

p(y; λ0, λ1) = p(y; λ0)

Definition 1. In Bayesian statistics, the kernel of a PDF is the form of the PDF in which factors
that are not functions of any of the model parameters are omitted, p ∝ K

Take normal distribution as an example. Say, Y|µ, σ2 ∼ N(µ, σ2). Then the (exact)
likelihood of the sample would be

p(y|µ, σ2) =
1√

2πσ2
e−

(y−µ)2

2σ2

If σ2 is known, then

p(y|µ) ∝ e−
(y−µ)2

2σ2 ∝ e
yµ

σ2 −
µ2

2σ2

If µ is known, then

p(y|σ2) ∝
1√
σ2

e−
(y−µ)2

σ2

Note that posterior can be also written as

p(θ|y) = p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

Here actually we can ignore p(y) since it does not contain any information about true
parameter θ. Thus

p(θ|y)︸ ︷︷ ︸
posterior

∝ p(y|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior
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1.2 Some Examples

• Binomial with uniform prior: Suppose that Y ∼ B(n, θ). Then

p(y|θ) =
(

n
y

)
θy(1 − θ)n−y, 0 ≤ y ≤ n, y ∈ N

If we have uniform prior on θ, i.e. θ ∼ U([0, 1]), then

p(θ|y) ∝ p(y|θ)p(θ) = θy(1 − θ)n−y

This is the posterior kernel. And it corresponds to Beta(y + 1, n − y + 1) distribu-
tion. Then how can we find marginal likelihood p(y)? The first way is through
integration:

p(y) =
∫

p(y|θ)p(θ)dθ

=
∫ 1

0

Γ(n + 1)
Γ(y + 1)Γ(n − y + 1)

θy(1 − θ)n−ydθ

=
Γ(n + 1)

Γ(y + 1)Γ(n − y + 1)
B(y + 1, n − y + 1)

=
Γ(n + 1)
Γ(n + 2)

=
1

n + 1

where B(p, q) is Beta function, and

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

The other way is to use normalizing constant method. Omitted (you have to recog-
nize the kernel is Beta distribution).

• Binomial with Beta prior: Similar setting, but this time, the prior of θ is B(α0, β0).
Then

p(θ|y) ∝ p(y|θ)p(θ) ∝ θy+α0−1(1 − θ)n−y+β0−1

Hence the posterior should be B(y + α0, n − y + β0)

1.3 Model Comparison

A model is defined by a likelihood function and a prior. Suppose that we have m
models, Mi for i = 1, · · · , m. They are all going to explain y. And model Mi depends
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upon parameters θi. The posterior for the parameters θi calculated using model Mi is

p(θi|y,Mi) =
p(y|θi,Mi)p(θi|Mi)

p(y|Mi)

The posterior model probability is

p(Mi|y) =
p(y|Mi)p(Mi)

p(y)

where p(Mi) is the prior model probability, which measures how likely we believe Mi

to be correct model before seeing the data. p(y|Mi) is the marginal likelihood, which is
calculated using

p(y|Mi) =
∫

p(y|θi,Mi)p(θi|Mi)dθi

The posterior odds ratio is defined as:

POij =
p(Mi|y)
p(Mj|y)

=
p(y|Mi)

p(y|Mj)︸ ︷︷ ︸
Bayes Factor

p(Mi)

p(Mj)︸ ︷︷ ︸
prior odd ratio

How to present the posterior distribution if there is no closed form solution? Con-
sider the following example: Binomial likelihood with truncated normal prior: θ ∼
pTN(0,1,0,1)(θ), 0 ≤ θ ≤ 1. That is

p(θ) =
√

2π

Φ(1)− Φ(0)
exp

(
−θ2

2

)
∝ exp

(
−θ2

2

)
The posterior kernel is

p(θ|y) ∝ θy(1 − θ)n−y exp
(
−θ2

2

)
According to the Bayes’ rule, one can derive that

p(θ|y) = p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

=
θy(1 − θ)n−y exp(− θ2

2 )∫
θy(1 − θ)n−y exp(− θ2

2 )dθ

Thus, the posterior mean is

E[θ̃|y] =
∫ 1

0
θp(θ|y)dθ =

∫
θy(1 − θ)n−y exp(− θ2

2 )∫
θy+1(1 − θ)n−y exp(− θ2

2 )dθ
dθ

4



1.4 Monte Carlo Integration

We would like to evaluate the following integral:

E[g(θ)|Y ] =
∫

g(θ)p(θ|y)dθ

Law of Large number can help us to achieve that.

1. Generate S i.i.d random draws {y(s)}S
s=1 from pY(y), where each y(s) = Ys(ω) is a

realization of Ys ∼ pY(y) i.i.d

2. Calculate
1
S

S

∑
s=1

g(y(s))

2 Single-parameter models

2.1 Conjugate Prior

Definition 2. A prior distribution p(θ) ∈ F is said to be conjugate for a likelihood function
p(y|θ) if the posterior distribution p(θ|y) ∈ F .

Definition 3. A conjugate prior that has the same functional form as the likelihood function
regarded as a function of θ.

2.2 Some Examples

• Exponential-Gamma system: Suppose that Yi|θ ∼ Exp(θ), then the likelihood is
given by

p(y|θ) =
n

∏
i=1

θ exp(−θyi) = θn exp(−nȳnθ)

The conjugate prior is Gamma distribution: θ ∼ Gamma(α0, 1/β0), i.e.

p(θ) =
βα0

0
Γ(α0)

θα0−1 exp(−β0θ) ∝ θα0−1 exp(−β0θ)

The kernel of the posterior is given by

p(θ|y) ∝ θn+α0−1 exp(−(β0 + nȳn)θ)

which is Gamma(α1, 1/β1) distribution.

5



2.3 Exponential Family

Definition 4 (Exponential Family). A PDF p(y|θ) where θ ∈ R is said to belong to the
one-parameter exponential family if it has form

p(y|θ) = c(θ)h(y) exp (ϕ(θ)t(y)) = h(y) exp (ϕ(θ)t(y)− κ(θ))

for some functions h(y), ϕ(θ), κ(θ) = − log c(θ) and t(y). If the support of Y is independent of
θ, then the family is said to be regular and otherwise it is irregular.

Here are some examples

• Exponential distribution:

p(y|θ) = θ exp(−θy)1{y>0}

Then ϕ(θ) = −θ, t(y) = y, κ(θ) = − log θ, h(y) = 1{y>0}.

• Poisson distribution:
p(y|θ) = θy

y!
e−θ1{y∈Z+}

Then ϕ(θ) = log θ, t(y) = y, κ(θ) = θ, h(y) = 1
y!1{y∈Z+}

• Uniform distribution

• Cauchy distribution

• Normal distribution with unknown mean

• Normal distribution with unknown variance

• What about normal distribution with unknown mean and variance? See next sec-
tion.

Theorem 1. Any exponential family population has a conjugate prior, with kernel

p(θ) ∝ exp(b0ϕ(θ)− a0κ(θ)) (1)

Proof. The posterior is given by

p(θ|y) ∝ p(y|θ)p(θ) ∝
n

∏
i=1

h(yi) exp (ϕ(θ)t(yi)− κ(θ)) exp(b0ϕ(θ)− a0κ(θ))

∝ exp

{(
b0 +

n

∑
i=1

t(yi)

)
ϕ(θ)− (a0 + n)κ(θ)

}
= exp(b1ϕ(θ)− a1κ(θ))
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where b1 = b0 + ∑n
i=1 t(yi) and a1 = a0 + n.

2.4 Normal Distribution

Normal Mean with Known Variance

First, let us consider normal distribution with known variance, and the mean µ, is
the parameter that we are interested in. Let θ = µ, then

p(y|θ) = 1√
2πσ2

e−
(y−θ)2

2σ2 =
1√

2πσ2
e−

y2

2σ2 e
yθ

σ2 −
θ2

2σ2

Then

ϕ(θ) =
θ

σ2 , t(y) = y, κ(θ) =
θ2

2σ2 , h(y) =
1√

2πσ2
e−

y2

2σ2

By the previous theorem, we know that the conjugate prior would be

p(θ) ∝ exp(b0ϕ(θ)− a0κ(θ)) = exp
(

b0
θ

σ2 − a0
θ2

2σ2

)
One can parameterize this family as

θ ∼ N(µ0, τ2
0 ) ⇒ p(θ) ∝ exp

(
− 1

2τ2
0
(θ − µ0)

2

)

Suppose that Yi|θ ∼ N(θ, σ2) with σ2 being known. Then the likelihood is given by

p(y|θ) =
n

∏
i=1

1√
2πσ2

e−
(yi−θ)2

2σ2

=
1

(2πσ2)n/2 exp

(
− 1

2σ2

n

∑
i=1

(yi − θ)2

)

∝ exp

(
− 1

2σ2

n

∑
i=1

(yi − θ)2

)

= exp

(
− 1

2σ2

n

∑
i=1

(y2
i − 2yiθ + θ2)

)

= exp

(
− 1

2σ2

(
nθ2 − 2nθȳ +

n

∑
i=1

y2
i + ȳ2

n − ȳ2
n

))
∝ exp

(
− n

2σ2 (θ − ȳn)
2
)

7



where ȳn := 1
n ∑n

i=1 yi. Then the MLE is given by

θ̂ML = ȳn ∼ N(θ, σ2/n)

The posterior is given by

p(θ|y) ∝ p(θ)p(y|θ) ∝ exp

(
−1

2

(
(θ − µ0)

2

τ2
0

+
(θ − ȳ)2

σ2/n

))

What is this distribution? We need some algebra. (Check the completing the squares
method). It can be written as

p(θ|y) ∝ exp

(
−1

2

(
(θ − µ1)

2

τ2
1

+
(µ0 − ȳ)2

τ2
0 + σ2/n

))
∝ exp

(
− 1

2τ2
1
(θ − µ1)

2

)

where

τ2
1 =

1
1/τ2

0 + n/σ2
, µ1 = τ2

1

(
µ0

τ2
0
+

nȳn

σ2

)
= γµ0 + (1 − γ)ȳn

if we define

γ =
1/τ2

0

1/τ2
0 + n/σ2

Normal Variance with Known Mean

Let θ = σ2, then

p(y|θ) = 1√
2πθ

exp
(
− (y − µ)2

2θ

)
∝ exp

(
− (y − µ)2

2θ
− 1

2
log θ

)
Hence

ϕ(θ) = − 1
2θ

, t(y) = (y − µ)2, κ(θ) =
1
2

log θ

By previous theorem, the kernel of conjugate prior is given by

p(θ) ∝ exp(b0ϕ(θ)− a0κ(θ)) = exp
(
− b0

2θ
− a0

2
log θ

)
= θ−

a0
2 exp

(
− b0

2θ

)
This is Inverse Gamma distribution. We can parameterize this family as

θ ∼ IG(ν0, s2
0)
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Then

p(θ) ∝ θ−(
ν0
2 +1) exp

(
−ν0

2
s2

0
θ

)
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