Bayesian Statistics Review

Jiahui Shui

October 10, 2025

1 Introduction

1.1 Basic Concepts in Bayesian Statistics

There are two basic inferences:

• MLE:

$$\hat{\theta}^{MLE} = \argmax_{\theta \in \Theta} \mathcal{L}(\theta) = \argmax_{\theta \in \Theta} \log \mathcal{L}(\theta)$$

where $\hat{\theta}^{MLE}$ is a statistics (i.e., a random variable), while the true parameter θ_0 is a constant.

• Bayesian approach:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

where $p(\theta|y)$ is a (conditional) distribution.

Then let's recall the Bayesian rules:

• For events *A* and *B*:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

• For random variables *X* and *Y*,

$$p_{X|Y}(x|y) = \frac{p_{Y|X}(y|x)p_X(x)}{p_Y(y)}$$

In Bayesian statistics, parameters are also considered as random variables. Suppose that the econometrician observes data y from some sample $Y \in \mathbb{R}^n$. The purpose of Bayesian

analysis is to use the data y to update the prior belief of θ .

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{p(\mathbf{y})}$$

Here $p(\theta|\mathbf{y})$ is called *posterior* distribution. And $p(\mathbf{y})$ is called *marginal likelihood* or *normalizing constant*. $p(\theta)$ is called *prior distribution*. In addition, we define the hyper parameters as coefficients that parameterize the prior and posterior distributions but do not directly affect the likelihood. We denote λ_0 as the prior hyper-parameters and $\lambda_1 = \lambda_1(y, \lambda_0)$ as the posterior hyper-parameters. Then the prior is $p(\theta; \lambda_0)$, the posterior is

$$p(\theta|\mathbf{y};\lambda_1) = p(\theta|\mathbf{y};\lambda_0)$$

and the marginal likelihood is

$$p(\mathbf{y}; \lambda_0, \lambda_1) = p(\mathbf{y}; \lambda_0)$$

Definition 1. *In Bayesian statistics, the kernel of a PDF is the form of the PDF in which factors that are not functions of any of the model parameters are omitted, p \propto K*

Take normal distribution as an example. Say, $Y|\mu,\sigma^2 \sim N(\mu,\sigma^2)$. Then the (exact) likelihood of the sample would be

$$p(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

If σ^2 is known, then

$$p(y|\mu) \propto e^{-\frac{(y-\mu)^2}{2\sigma^2}} \propto e^{\frac{y\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2}}$$

If μ is known, then

$$p(y|\sigma^2) \propto \frac{1}{\sqrt{\sigma^2}} e^{-\frac{(y-\mu)^2}{\sigma^2}}$$

Note that posterior can be also written as

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\theta)p(\theta)}{\int p(\mathbf{y}|\theta)p(\theta)d\theta}$$

Here actually we can ignore p(y) since it does not contain any information about true parameter θ . Thus

$$\underbrace{p(\theta|\mathbf{y})}_{\text{posterior}} \propto \underbrace{p(\mathbf{y}|\theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}$$

1.2 Some Examples

• Binomial with uniform prior: Suppose that $Y \sim B(n, \theta)$. Then

$$p(y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}, \quad 0 \le y \le n, y \in \mathbb{N}$$

If we have uniform prior on θ , i.e. $\theta \sim U([0,1])$, then

$$p(\theta|y) \propto p(y|\theta)p(\theta) = \theta^y(1-\theta)^{n-y}$$

This is the posterior kernel. And it corresponds to Beta(y + 1, n - y + 1) distribution. Then how can we find marginal likelihood p(y)? The first way is through integration:

$$p(y) = \int p(y|\theta)p(\theta)d\theta$$

$$= \int_0^1 \frac{\Gamma(n+1)}{\Gamma(y+1)\Gamma(n-y+1)} \theta^y (1-\theta)^{n-y} d\theta$$

$$= \frac{\Gamma(n+1)}{\Gamma(y+1)\Gamma(n-y+1)} \mathcal{B}(y+1, n-y+1)$$

$$= \frac{\Gamma(n+1)}{\Gamma(n+2)}$$

$$= \frac{1}{n+1}$$

where $\mathcal{B}(p,q)$ is Beta function, and

$$\mathcal{B}(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

The other way is to use normalizing constant method. Omitted (you have to recognize the kernel is Beta distribution).

• Binomial with Beta prior: Similar setting, but this time, the prior of θ is $\mathcal{B}(\alpha_0, \beta_0)$. Then

$$p(\theta|y) \propto p(y|\theta)p(\theta) \propto \theta^{y+\alpha_0-1}(1-\theta)^{n-y+\beta_0-1}$$

Hence the posterior should be $\mathcal{B}(y + \alpha_0, n - y + \beta_0)$

1.3 Model Comparison

A model is defined by a likelihood function and a prior. Suppose that we have m models, \mathcal{M}_i for $i = 1, \dots, m$. They are all going to explain y. And model \mathcal{M}_i depends

upon parameters θ^i . The posterior for the parameters θ^i calculated using model \mathcal{M}_i is

$$p(\theta^{i}|\boldsymbol{y},\mathcal{M}_{i}) = \frac{p(\boldsymbol{y}|\theta^{i},\mathcal{M}_{i})p(\theta^{i}|\mathcal{M}_{i})}{p(\boldsymbol{y}|\mathcal{M}_{i})}$$

The posterior model probability is

$$p(\mathcal{M}_i|\mathbf{y}) = \frac{p(\mathbf{y}|\mathcal{M}_i)p(\mathcal{M}_i)}{p(\mathbf{y})}$$

where $p(\mathcal{M}_i)$ is the prior model probability, which measures how likely we believe \mathcal{M}_i to be correct model before seeing the data. $p(y|\mathcal{M}_i)$ is the marginal likelihood, which is calculated using

$$p(y|\mathcal{M}_i) = \int p(y|\theta^i, \mathcal{M}_i) p(\theta^i|\mathcal{M}_i) d\theta^i$$

The posterior odds ratio is defined as:

$$PO_{ij} = \frac{p(\mathcal{M}_i|\boldsymbol{y})}{p(\mathcal{M}_j|\boldsymbol{y})} = \underbrace{\frac{p(\boldsymbol{y}|\mathcal{M}_i)}{p(\boldsymbol{y}|\mathcal{M}_j)}}_{\text{Bayes Factor prior odd ratio}} \underbrace{\frac{p(\mathcal{M}_i)}{p(\mathcal{M}_j)}}_{p(\mathcal{M}_j)}$$

How to present the posterior distribution if there is no closed form solution? Consider the following example: Binomial likelihood with truncated normal prior: $\theta \sim p_{TN(0,1,0,1)}(\theta)$, $0 \le \theta \le 1$. That is

$$p(\theta) = \frac{\sqrt{2\pi}}{\Phi(1) - \Phi(0)} \exp\left(-\frac{\theta^2}{2}\right) \propto \exp\left(-\frac{\theta^2}{2}\right)$$

The posterior kernel is

$$p(\theta|y) \propto \theta^y (1-\theta)^{n-y} \exp\left(-\frac{\theta^2}{2}\right)$$

According to the Bayes' rule, one can derive that

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta} = \frac{\theta^{y}(1-\theta)^{n-y}\exp(-\frac{\theta^{2}}{2})}{\int \theta^{y}(1-\theta)^{n-y}\exp(-\frac{\theta^{2}}{2})d\theta}$$

Thus, the posterior mean is

$$\mathbb{E}[\tilde{\theta}|y] = \int_0^1 \theta p(\theta|y) d\theta = \int \frac{\theta^y (1-\theta)^{n-y} \exp(-\frac{\theta^2}{2})}{\int \theta^{y+1} (1-\theta)^{n-y} \exp(-\frac{\theta^2}{2}) d\theta} d\theta$$

1.4 Monte Carlo Integration

We would like to evaluate the following integral:

$$\mathbb{E}[g(\theta)|\mathbf{Y}] = \int g(\theta)p(\theta|\mathbf{y})d\theta$$

Law of Large number can help us to achieve that.

- 1. Generate S i.i.d random draws $\{y^{(s)}\}_{s=1}^{S}$ from $p_Y(y)$, where each $y^{(s)} = Y_s(\omega)$ is a realization of $Y_s \sim p_Y(y)$ i.i.d
- 2. Calculate

$$\frac{1}{S} \sum_{s=1}^{S} g(y^{(s)})$$

2 Single-parameter models

2.1 Conjugate Prior

Definition 2. A prior distribution $p(\theta) \in \mathcal{F}$ is said to be conjugate for a likelihood function $p(y|\theta)$ if the posterior distribution $p(\theta|y) \in \mathcal{F}$.

Definition 3. A conjugate prior that has the same functional form as the likelihood function regarded as a function of θ .

2.2 Some Examples

• Exponential-Gamma system: Suppose that $Y_i|\theta \sim \text{Exp}(\theta)$, then the likelihood is given by

$$p(\mathbf{y}|\theta) = \prod_{i=1}^{n} \theta \exp(-\theta y_i) = \theta^n \exp(-n\bar{y}_n \theta)$$

The conjugate prior is Gamma distribution: $\theta \sim \text{Gamma}(\alpha_0, 1/\beta_0)$, i.e.

$$p(\theta) = \frac{\beta_0^{\alpha_0}}{\Gamma(\alpha_0)} \theta^{\alpha_0 - 1} \exp(-\beta_0 \theta) \propto \theta^{\alpha_0 - 1} \exp(-\beta_0 \theta)$$

The kernel of the posterior is given by

$$p(\theta|\mathbf{y}) \propto \theta^{n+\alpha_0-1} \exp(-(\beta_0 + n\bar{y}_n)\theta)$$

which is $Gamma(\alpha_1, 1/\beta_1)$ distribution.

2.3 Exponential Family

Definition 4 (Exponential Family). A PDF $p(y|\theta)$ where $\theta \in \mathbb{R}$ is said to belong to the one-parameter exponential family if it has form

$$p(y|\theta) = c(\theta)h(y)\exp\left(\phi(\theta)t(y)\right) = h(y)\exp\left(\phi(\theta)t(y) - \kappa(\theta)\right)$$

for some functions h(y), $\phi(\theta)$, $\kappa(\theta) = -\log c(\theta)$ and t(y). If the support of Y is independent of θ , then the family is said to be regular and otherwise it is irregular.

Here are some examples

• Exponential distribution:

$$p(y|\theta) = \theta \exp(-\theta y) \mathbb{1}_{\{y>0\}}$$

Then
$$\phi(\theta) = -\theta$$
, $t(y) = y$, $\kappa(\theta) = -\log \theta$, $h(y) = \mathbb{1}_{\{y>0\}}$.

• Poisson distribution:

$$p(y|\theta) = \frac{\theta^y}{y!} e^{-\theta} \mathbb{1}_{\{y \in \mathbb{Z}_+\}}$$

Then
$$\phi(\theta) = \log \theta$$
, $t(y) = y$, $\kappa(\theta) = \theta$, $h(y) = \frac{1}{y!} \mathbb{1}_{\{y \in \mathbb{Z}_+\}}$

- Uniform distribution
- Cauchy distribution
- Normal distribution with unknown mean
- Normal distribution with unknown variance
- What about normal distribution with unknown mean and variance? See next section.

Theorem 1. Any exponential family population has a conjugate prior, with kernel

$$p(\theta) \propto \exp(b_0 \phi(\theta) - a_0 \kappa(\theta))$$
 (1)

Proof. The posterior is given by

$$p(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta)p(\theta) \propto \prod_{i=1}^{n} h(y_i) \exp(\phi(\theta)t(y_i) - \kappa(\theta)) \exp(b_0\phi(\theta) - a_0\kappa(\theta))$$
$$\propto \exp\left\{\left(b_0 + \sum_{i=1}^{n} t(y_i)\right)\phi(\theta) - (a_0 + n)\kappa(\theta)\right\} = \exp(b_1\phi(\theta) - a_1\kappa(\theta))$$

where $b_1 = b_0 + \sum_{i=1}^{n} t(y_i)$ and $a_1 = a_0 + n$.

2.4 Normal Distribution

Normal Mean with Known Variance

First, let us consider normal distribution with known variance, and the mean μ , is the parameter that we are interested in. Let $\theta = \mu$, then

$$p(y|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\theta)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{y^2}{2\sigma^2}} e^{\frac{y\theta}{\sigma^2} - \frac{\theta^2}{2\sigma^2}}$$

Then

$$\phi(\theta) = \frac{\theta}{\sigma^2}$$
, $t(y) = y$, $\kappa(\theta) = \frac{\theta^2}{2\sigma^2}$, $h(y) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{y^2}{2\sigma^2}}$

By the previous theorem, we know that the conjugate prior would be

$$p(\theta) \propto \exp(b_0 \phi(\theta) - a_0 \kappa(\theta)) = \exp\left(b_0 \frac{\theta}{\sigma^2} - a_0 \frac{\theta^2}{2\sigma^2}\right)$$

One can parameterize this family as

$$\theta \sim N(\mu_0, \tau_0^2) \Rightarrow p(\theta) \propto \exp\left(-\frac{1}{2\tau_0^2}(\theta - \mu_0)^2\right)$$

Suppose that $Y_i | \theta \sim N(\theta, \sigma^2)$ with σ^2 being known. Then the likelihood is given by

$$p(y|\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(y_{i}-\theta)^{2}}{2\sigma^{2}}}$$

$$= \frac{1}{(2\pi\sigma^{2})^{n/2}} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i}-\theta)^{2}\right)$$

$$\propto \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i}-\theta)^{2}\right)$$

$$= \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i}^{2}-2y_{i}\theta+\theta^{2})\right)$$

$$= \exp\left(-\frac{1}{2\sigma^{2}} \left(n\theta^{2}-2n\theta\bar{y}+\sum_{i=1}^{n} y_{i}^{2}+\bar{y}_{n}^{2}-\bar{y}_{n}^{2}\right)\right)$$

$$\propto \exp\left(-\frac{n}{2\sigma^{2}} (\theta-\bar{y}_{n})^{2}\right)$$

where $\bar{y}_n := \frac{1}{n} \sum_{i=1}^n y_i$. Then the MLE is given by

$$\hat{\theta}^{ML} = \bar{y}_n \sim N(\theta, \sigma^2/n)$$

The posterior is given by

$$p(\theta|\mathbf{y}) \propto p(\theta)p(\mathbf{y}|\theta) \propto \exp\left(-\frac{1}{2}\left(\frac{(\theta-\mu_0)^2}{\tau_0^2} + \frac{(\theta-\bar{\mathbf{y}})^2}{\sigma^2/n}\right)\right)$$

What is this distribution? We need some algebra. (Check the completing the squares method). It can be written as

$$p(\theta|\mathbf{y}) \propto \exp\left(-\frac{1}{2}\left(\frac{(\theta-\mu_1)^2}{\tau_1^2} + \frac{(\mu_0-\bar{\mathbf{y}})^2}{\tau_0^2 + \sigma^2/n}\right)\right) \propto \exp\left(-\frac{1}{2\tau_1^2}(\theta-\mu_1)^2\right)$$

where

$$\tau_1^2 = \frac{1}{1/\tau_0^2 + n/\sigma^2}, \quad \mu_1 = \tau_1^2 \left(\frac{\mu_0}{\tau_0^2} + \frac{n\bar{y}_n}{\sigma^2} \right) = \gamma \mu_0 + (1 - \gamma)\bar{y}_n$$

if we define

$$\gamma = \frac{1/\tau_0^2}{1/\tau_0^2 + n/\sigma^2}$$

Normal Variance with Known Mean

Let $\theta = \sigma^2$, then

$$p(y|\theta) = \frac{1}{\sqrt{2\pi\theta}} \exp\left(-\frac{(y-\mu)^2}{2\theta}\right) \propto \exp\left(-\frac{(y-\mu)^2}{2\theta} - \frac{1}{2}\log\theta\right)$$

Hence

$$\phi(\theta) = -\frac{1}{2\theta}$$
, $t(y) = (y - \mu)^2$, $\kappa(\theta) = \frac{1}{2}\log\theta$

By previous theorem, the kernel of conjugate prior is given by

$$p(\theta) \propto \exp(b_0 \phi(\theta) - a_0 \kappa(\theta)) = \exp\left(-\frac{b_0}{2\theta} - \frac{a_0}{2} \log \theta\right) = \theta^{-\frac{a_0}{2}} \exp\left(-\frac{b_0}{2\theta}\right)$$

This is Inverse Gamma distribution. We can parameterize this family as

$$\theta \sim IG(\nu_0, s_0^2)$$

$$p(\theta) \propto \theta^{-(\frac{\nu_0}{2}+1)} \exp\left(-\frac{\nu_0}{2}\frac{s_0^2}{\theta}\right)$$