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Motivation

» Dynamic asset pricing models often employ latent state
variables to model fundamental risk factors

» A small number of latent state variables connect a broad set
of cross-sectional asset prices via no-arbitrage restrictions

» Conversely, the market-observed cross-sectional prices can be
used to extract risk factors governed by the state variables
under no-arbitrage conditions

» However, estimating those models is challenging (e.g. QMLE)
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Arbitrage-Free Cross-Sectional Factors

> Assuming the existence of a risk-neutral measure, the excess
return of asset i
dPit
Pi

— rdt = bidFR +dej, i=1,2,---,N (1)

» The mean of the latent risk factors, dFtQ, is zero under the

risk-neutral measure Q and non-zero under physical measure
P.

» de; is zero mean under both Q and P, representing pricing
errors.

» Under physical measure P:
dFR = Audt + dF; (2)

where A; is the vector of risk premiums corresonding to each
risk factor.
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Motivation

» Fama and French (2020): Exogenously specified factor
loadings, such as values of size, book-to-market ratio, etc

» We use model-implied factor loadings to extract the
cross-section factors.

» Consequence: corresponding cross-section factors are dFtQ are
the risk-neutral cross-section factors

» By contrast, the cross-section factors from Fama and French
(2020) are long-short portfolios associated with the
characteristics
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Affine Term Structure Model

» Canonical form: The instantaneous nominal interest rate is
affine in state variables:

ry = (SO + ]-/Xt (3)
» Dynamics of x; under risk neutral measure Q:
dxe = —K9xdt + ¢dBE (4)

» The zero-coupon bond price at time t with maturity
7= T — tis given by

pr=E [e— N fst] — (7)) +b(7) Xt (5)
> By It6's lemma, we have

dpy

Pt

= rdt + b(1) 0dBR (6)
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Pricing Equation

» Suppose we observed that

P
% = rdt + B'0dBY + 0.dBE (7)
t

where g.dB; are pricing errors.
» Here, our estimated factors are adBtQ

» Moreover, suppose the market price of risk has the following
form

Ae = Xo + Aixe (8)

» We can further estimate Ag and Aj via time-series regression.
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Estimation

» Factors are obtained from regression:
odBR = Ab(AL' Ab)LAbAP (9)

where Ab and AP are corresponding demeaned processes.
» Minimize the following problem:

Mﬂ

/
min <APt - AbadBf?> (AP, — AbodBR) (10)

t=1

> After getting K9, generate x;. Guess xg
> Using regression to get Ag and A; from

ocdBf = ocA1xedt + oAodt 4 od By (11)
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Simulations
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Figure: Comparison between estimated yield and simulated yield
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Simulations
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Figure: Comparison between estimated market price of risk and simulated
market price of risk
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Preliminary Result
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Figure: Fitted Yield
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Preliminary Result
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Figure: Fitted Bond Return. Investor care returns rather than yields!
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Possible Improvements

» Estimating xg from data

» Deviate from no arbitrage assumption

» State-dependent b

» Bond trading data rather than 'constructed’ yield data
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