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Notations

® Let P(t,T) be the price of a zero-coupon bond that pays $1 at maturity 7" and
p(t,T) =1In P(t,T') be the log price.
® The bond price is given by

P(t,T) = E} [~ 4 74*] = E, [Z]

where &, is the SDF process:

t t
& = exp 1 / Al Ayds — / AydB,
2 0 0

® The yield is given by

1
In P(t,T) = —=—p(t, )

t,T) = —
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Bond Pricing

The pricing relation shows that the term structure model consists two parts:
® Change of measure: From P to Q.
® The dynamics of short rate under Q. In factor models, this can be written as
ry = h(x;), where z; is a time-homogeneous Markov process under Q.

Then the bond price is also a function of x; (and maturity 7 := T — t),
P(t,T) = H(w,7)

Therefore, yield is also a function of z;.

What if A has a linear functional form? = Affine term structure models.
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Affine Term Structure Model

Under Q, the dynamics of x; are given by

dxy = —Kthdt + odB;@

The short rate is affine in factors: r; = dg + 5;—9015

Then Duffie and Kan (1996) proved that
® The bond price is (exponentially) affine in factors: P(t,T) = ea(M)+b(r) T
® The yield is alsoaffine in factors: y(t,T) = A(7) + B(7) T2,

What about dynamics under P? If A; = Ao + A1z, which is affine in factors, then
the dynamics of x; under P can be represented as

dzy = —K¥(zy — z%)dt + odBY
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Discrete-Time Analogy

Let Pt(n) denote the bond price at time ¢ with maturity n. p§") =1In Pt(")
The state variables follow (under P)

Xep1 =p+ Xy +v1,  vi41 ~ N(0,X)

Under Q:

Xepr = pu@+ 09X, + 02
The short rate is still affine in X;: 7 = dg + 51rXt.
The pricing kernel is given by

1
M1 = exp {—Tt - iAtTEAt - AtTUt+1}

Log bond price is affine in factors:

(n)

2 :an+bIXt
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Estimation Methods

MLE: Ait-Sahalia and Kimmel (2010), Joslin et al. (2011)
GMM: Dai and Singleton (2000) (Simulation-based Method of Moments)

Hamilton and Wu (2012): Minimize chi square statistic for test that restrictions are
valid. Asymptotically equivalent to MLE, but simpler.

OLS: Adrian et al. (2013).
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OLS Estimation: ACM

® |og excess return: rwﬁi}l) = pii}l) —pgn) — T

®r,=—In Pt(l) is the continuously compounded risk-free rate.
(n—1)

[ ]

Suppose that the pricing error is etiz , which is orthogonal to v; 1.

From the model, we can derive that

n— n— ]‘ n— n—
raftyV = BTS20 + 0 Xp) - 5 (807D TEE0 4 62)

Expected return

Convexity adjustment
-)T (n—1)
+ B(n ) Vg1t €141
—_———

Priced return innovation  Return Pricing Error
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ACM Estimation

e Observed factors (First K PCs of yield curve): X;. Use OLS (VAR) to get ®, /i and

V41

® Run Regression: rxgﬂ Yonz= [1, D41, X¢l:

and v = '\
® Thus
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Affine Yields

Let uE”) denote the pricing error on the log prices: pE”) =a, + bIXt + uﬁ”)

e Also note that mgﬁfl) = pg:l) —p" 4 piV

System of linear restrictions:

1
n = an_1 4+ b1 (= TY2No) + 5(1)%_12671_1 +a?) — do

by = b (& —XV2N) — &,
ap=0, by=0, B = b

® Also, the log bond pricing errors can be decomposed as
(n—1) (n) 1 _ (n—1)
U - — U U = Ci+1
Log yield pricing error return pricing error

"Risk-neutral Yields": Set A\og = 0, \; = 0 and then obtain a},, b;. Define
Yrn = —1(ak + bizy): yields when P = Q.
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A Three-factor Example - PCA
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Figure: First three PCs (normalized)



A Three-factor Example

Data: Giirkaynak et al. (2007). Sample Period: From 1961-06 to 2024-09
Consider the first three (Normalized) PCs as state variables, i.e. mean 0 and std 1.
Step 1: Estimate VAR(1):

Xiv1 = p+ Xy + v

Estimated ®
0.9938 —0.0041 —0.0043

0.0110 0.9523  0.0764
0.0087 0.0163  0.8004

PC1: highly persistent
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A Three-factor Example

Step 2: Run regression mcii}l) on Z = [1,0441, Xy:

(&, 8,4] =raZ' (22"

get 5\0 and 5\1

Step 3: Run regression
re = 0g + (Sil‘t

Step 4: Use 30 and 31 with system of linear restrictions to get a,, and b,,.

 Question: Is this b, the same as the (™ obtained from regression? There are gaps.

12/19



Factor Loadings
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Factor Loadings
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Factor Loadings
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Spanning Hypothesis

® Yields= f(X;) is a function of state variables. 7= X; = f~1(Yields)
® Yields must contain information about evolution in underlying state variables
® The question is, do yields contain all the information about underlying risk factors?

® In other words, is there any variables can forecast future yields and return given
current yields?

® Yes: Ludvigson and Ng (2009), Joslin et al. (2014), Huang and Shi (2023), ...
® Probably No: Bauer and Hamilton (2018), Duffee (2013), ...
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ACM Extensions

® Now consider spanning factors (from yields) X; and unspanning factors X}*.

® The spanning restriction is that the risk exposures of the unspanned factors are equal
to zero, i.e. f(M = [ﬁ§”),o]

e Fitting results show that the unspanned macro factor specification provides a
somewhat poorer fit to cross section of Treasury yields than four- and five- factor

specifications.
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Term Premium

® Term Premium is defined as difference between yields and risk-neutral yields.
® Updated daily at Federal Reserve Bank of New York

® | will introduce more about term premium in next slides.
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https://www.newyorkfed.org/research/data_indicators/term-premia-tabs

Bond Excess Return Derivation

For continuous-time model: By Itd's lemma, the log bond excess return is given by
dIn P(t,T) — rdt = bod BR

For discrete-time model: note that

n n— n— L
P = E[M PV > 1= [GXP (Tx£+11) - §A:EAt - Atvt+1>}

Note that rxgizl) and vy are joint normally distributed., then

n— n— 1 n—
Et[rxgﬂ 1)] = Covt[m:gJrl 1),1);1At] — §Vart[rx£+ll)}

Denote

515("71) — E_lCovt(rxgiII), vtTi-l)
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