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Notations

• Let P (t, T ) be the price of a zero-coupon bond that pays $1 at maturity T and
p(t, T ) = lnP (t, T ) be the log price.

• The bond price is given by

P (t, T ) = EQ
t

[
e−

∫ T
t rsds

]
= Et

[
ξT
ξt

]
where ξt is the SDF process:

ξt = exp

{
−1

2

∫ t

0
Λ⊤
s Λsds−

∫ t

0
ΛsdBs

}
• The yield is given by

y(t, T ) = − 1

T − t
lnP (t, T ) = − 1

T − t
p(t, T )
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Bond Pricing

• The pricing relation shows that the term structure model consists two parts:
• Change of measure: From P to Q.
• The dynamics of short rate under Q. In factor models, this can be written as

rt = h(xt), where xt is a time-homogeneous Markov process under Q.

• Then the bond price is also a function of xt (and maturity τ := T − t),
P (t, T ) = H(xt, τ)

• Therefore, yield is also a function of xt.

• What if h has a linear functional form? ⇒ Affine term structure models.
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Affine Term Structure Model

• Under Q, the dynamics of xt are given by

dxt = −KQxtdt+ σdBQ
t

• The short rate is affine in factors: rt = δ0 + δ⊤1 xt
• Then Duffie and Kan (1996) proved that

• The bond price is (exponentially) affine in factors: P (t, T ) = ea(τ)+b(τ)⊤xt

• The yield is alsoaffine in factors: y(t, T ) = A(τ) +B(τ)⊤xt

• What about dynamics under P? If Λt = λ0 + λ1xt, which is affine in factors, then
the dynamics of xt under P can be represented as

dxt = −KP(xt − x̄P)dt+ σdBP
t
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Discrete-Time Analogy

• Let P
(n)
t denote the bond price at time t with maturity n. p

(n)
t := lnP

(n)
t

• The state variables follow (under P)

Xt+1 = µ+ΦXt + vt+1, vt+1 ∼ N(0,Σ)

Under Q:
Xt+1 = µQ +ΦQXt + vQt+1

• The short rate is still affine in Xt: rt = δ0 + δ⊤1 Xt.

• The pricing kernel is given by

Mt+1 = exp

{
−rt −

1

2
Λ⊤
t ΣΛt − Λ⊤

t vt+1

}
• Log bond price is affine in factors:

p
(n)
t = an + b⊤nXt
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Estimation Methods

• MLE: Ait-Sahalia and Kimmel (2010), Joslin et al. (2011)

• GMM: Dai and Singleton (2000) (Simulation-based Method of Moments)

• Hamilton and Wu (2012): Minimize chi square statistic for test that restrictions are
valid. Asymptotically equivalent to MLE, but simpler.

• OLS: Adrian et al. (2013).
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OLS Estimation: ACM

• Log excess return: rx
(n−1)
t+1 := p

(n−1)
t+1 − p

(n)
t − rt

• rt = − lnP
(1)
t is the continuously compounded risk-free rate.

• Suppose that the pricing error is e
(n−1)
t+1 , which is orthogonal to vt+1.

• From the model, we can derive that Bond Excess Return Derivation

rx
(n−1)
t+1 = β(n−1)⊤Σ1/2(λ0 + λ1Xt)︸ ︷︷ ︸

Expected return

− 1

2

(
β(n−1)⊤Σβ(n−1) + σ2

)
︸ ︷︷ ︸

Convexity adjustment

+ β(n−1)⊤vt+1︸ ︷︷ ︸
Priced return innovation

+ e
(n−1)
t+1︸ ︷︷ ︸

Return Pricing Error
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ACM Estimation

• Observed factors (First K PCs of yield curve): Xt. Use OLS (VAR) to get Φ̂, µ̂ and
v̂t+1.

• Run Regression: rx
(n−1)
t+1 on Z = [1, v̂t+1, Xt]:

[α̂, β̂, γ̂] = rxZ⊤(ZZ⊤)−1

• Note that according to model

α = β⊤λ0 −
1

2
(B∗vec(Σ̂) + σ2ιN )

and γ = β′λ1

• Thus

λ̂0 = (β̂β̂⊤)−1β̂(α̂+
1

2
(B∗vec(Σ̂) + σ2ιN ))

λ̂1 = (β̂β̂⊤)−1β̂γ̂
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Affine Yields

• Let u
(n)
t denote the pricing error on the log prices: p

(n)
t = an + b⊤nXt + u

(n)
t

• Also note that rx
(n−1)
t+1 = p

(n−1)
t+1 − p

(n)
t + p

(1)
t

• System of linear restrictions:

an = an−1 + b′n−1(µ− Σ1/2λ0) +
1

2
(b′n−1Σbn−1 + σ2)− δ0

bn = b′n−1(Φ− Σ1/2λ1)− δ′1

a0 = 0, b′0 = 0, β(n) = b′n

• Also, the log bond pricing errors can be decomposed as

u
(n−1)
t+1 − u

(n)
t + u

(1)
t︸ ︷︷ ︸

Log yield pricing error

= e
(n−1)
t+1︸ ︷︷ ︸

return pricing error

• ”Risk-neutral Yields”: Set λ0 = 0, λ1 = 0 and then obtain a∗n, b
∗
n. Define

yrn = − 1
n(a

∗
n + b∗nxt): yields when P = Q.
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A Three-factor Example - PCA

Figure: First three PCs (normalized)
10 / 19



A Three-factor Example

• Data: Gürkaynak et al. (2007). Sample Period: From 1961-06 to 2024-09

• Consider the first three (Normalized) PCs as state variables, i.e. mean 0 and std 1.

• Step 1: Estimate VAR(1):

Xt+1 = µ+ΦXt + vt+1

• Estimated Φ̂ 0.9938 −0.0041 −0.0043
0.0110 0.9523 0.0764
0.0087 0.0163 0.8004


• PC1: highly persistent
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A Three-factor Example

• Step 2: Run regression rx
(n−1)
t+1 on Z = [1, v̂t+1, Xt]:

[α̂, β̂, γ̂] = rxZ ′(ZZ ′)−1

get λ̂0 and λ̂1

• Step 3: Run regression
rt = δ0 + δ′1xt

• Step 4: Use δ̂0 and δ̂1 with system of linear restrictions to get an and bn.

• Question: Is this bn the same as the β(n) obtained from regression? There are gaps.

12 / 19



Factor Loadings
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Factor Loadings
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Factor Loadings
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Spanning Hypothesis

• Yields= f(Xt) is a function of state variables. ?⇒ Xt = f−1(Yields)

• Yields must contain information about evolution in underlying state variables

• The question is, do yields contain all the information about underlying risk factors?

• In other words, is there any variables can forecast future yields and return given
current yields?

• Yes: Ludvigson and Ng (2009), Joslin et al. (2014), Huang and Shi (2023), ...

• Probably No: Bauer and Hamilton (2018), Duffee (2013), ...
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ACM Extensions

• Now consider spanning factors (from yields) Xs
t and unspanning factors Xu

t .

• The spanning restriction is that the risk exposures of the unspanned factors are equal

to zero, i.e. β(n) = [β
(n)
s , 0]

• Fitting results show that the unspanned macro factor specification provides a
somewhat poorer fit to cross section of Treasury yields than four- and five- factor
specifications.
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Term Premium

• Term Premium is defined as difference between yields and risk-neutral yields.

• Updated daily at Federal Reserve Bank of New York

• I will introduce more about term premium in next slides.
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https://www.newyorkfed.org/research/data_indicators/term-premia-tabs


Back Bond Excess Return Derivation

• For continuous-time model: By Itô’s lemma, the log bond excess return is given by

d lnP (t, T )− rtdt = bσdBQ
t

• For discrete-time model: note that

P
(n)
t = Et[Mt+1P

(n−1)
t+1 ] ⇒ 1 = E

[
exp

(
rx

(n−1)
t+1 − 1

2
Λ⊤
t ΣΛt − Λtvt+1

)]
• Note that rx

(n−1)
t+1 and vt+1 are joint normally distributed., then

Et[rx
(n−1)
t+1 ] = Covt[rx

(n−1)
t+1 , v⊤t+1Λt]−

1

2
Vart[rx

(n−1)
r+1 ]

• Denote
β
(n−1)
t = Σ−1Covt(rx

(n−1)
t+1 , v⊤t+1)

19 / 19



References I

Adrian, T., R. K. Crump, and E. Moench (2013). Pricing the term structure with linear
regressions. Journal of Financial Economics 110(1), 110–138.

Ait-Sahalia, Y. and R. L. Kimmel (2010). Estimating affine multifactor term structure
models using closed-form likelihood expansions. Journal of Financial Economics 98(1),
113–144.

Bauer, M. D. and J. D. Hamilton (2018). Robust bond risk premia. The Review of
Financial Studies 31(2), 399–448.

Dai, Q. and K. J. Singleton (2000). Specification analysis of affine term structure models.
The journal of finance 55(5), 1943–1978.

Duffee, G. (2013). Forecasting interest rates. In Handbook of economic forecasting,
Volume 2, pp. 385–426. Elsevier.

Duffie, D. and R. Kan (1996). A yield-factor model of interest rates. Mathematical
finance 6(4), 379–406.

19 / 19



References II

Gürkaynak, R. S., B. Sack, and J. H. Wright (2007). The us treasury yield curve: 1961 to
the present. Journal of monetary Economics 54(8), 2291–2304.

Hamilton, J. D. and J. C. Wu (2012). Identification and estimation of gaussian affine
term structure models. Journal of Econometrics 168(2), 315–331.

Huang, J.-Z. and Z. Shi (2023). Machine-learning-based return predictors and the
spanning controversy in macro-finance. Management Science 69(3), 1780–1804.

Joslin, S., M. Priebsch, and K. J. Singleton (2014). Risk premiums in dynamic term
structure models with unspanned macro risks. The Journal of Finance 69(3),
1197–1233.

Joslin, S., K. J. Singleton, and H. Zhu (2011). A new perspective on gaussian dynamic
term structure models. The Review of Financial Studies 24(3), 926–970.

Ludvigson, S. C. and S. Ng (2009). Macro factors in bond risk premia. The Review of
Financial Studies 22(12), 5027–5067.

19 / 19


	Introduction
	Reference
	References

