Credit Yield Spread Propositions

Jiahui Shui
jishui@ucsd.edu

Rady School of Management, UCSD
April 14, 2024

Yield Spread

- Definition:

$$
e^{-\Delta_{0} T}=\frac{D_{0}}{F P(0, T)}
$$

- Introduce T-forward measure \mathbb{Q}^{T} :

$$
\frac{\mathrm{d} \mathbb{Q}^{T}}{\mathrm{~d} \mathbb{Q}}=\frac{e^{-\int_{0}^{T} r_{s} \mathrm{~d} s}}{\mathbb{E}_{t}^{\mathbb{Q}}\left[e^{-\int_{0}^{T} r_{s} \mathrm{~d} s}\right]}
$$

- Alternative expression:

$$
e^{-\Delta_{0} T}=\frac{1}{F} \mathbb{E}^{\mathbb{Q}^{T}}\left[\min \left(V_{T}, F\right)\right]
$$

Heston Model

- Firm value

$$
\mathrm{d} V_{t}=V_{t}\left(r_{t} \mathrm{~d} t+\sigma_{1} \sqrt{v_{t}} \mathrm{~d} B_{t}^{\mathbb{Q}}+\sigma_{2} \mathrm{~d} Z_{t}^{\mathbb{Q}}\right)
$$

- Short rate

$$
\mathrm{d} r_{t}=-K^{\mathbb{Q}}\left(r_{t}-\bar{r}^{\mathbb{Q}}\right) \mathrm{d} t+\sigma_{r} \sqrt{v_{t}} \mathrm{~d} B_{r t}^{\mathbb{Q}}
$$

- Volatility process

$$
\mathrm{d} v_{t}=-K\left(v_{t}-\bar{v}^{\mathbb{Q}}\right) \mathrm{d} t+\sigma_{v} \sqrt{v_{t}} \mathrm{~d} B_{v t}^{\mathbb{Q}}
$$

- Correlation: $\mathrm{d} B_{t}^{\mathbb{Q}} \mathrm{d} B_{r t}^{\mathbb{Q}}=\rho_{r} \mathrm{~d} t, \mathrm{~d} B_{t}^{\mathbb{Q}} \mathrm{d} B_{v t}^{\mathbb{Q}}=\rho_{v} \mathrm{~d} t$, $\mathrm{d} B_{r t}^{\mathbb{Q}} \mathrm{d} B_{v t}^{\mathbb{Q}}=\rho_{r v} \mathrm{~d} t . Z_{t}^{\mathbb{Q}}$ is independent of other Brownian motions.

T-forward Measure

- Under T-forward measure, the log firm value process $\left(x_{t}\right)$ has following dynamic:

$$
\begin{aligned}
\mathrm{d} x_{t} & =\left(r_{t}+\left(b(t) \rho_{r} \sigma_{1} \sigma_{r}+\rho_{v} h(t) \sigma_{1} \sigma_{v}-\frac{1}{2} \sigma_{1}^{2}\right) v_{t}-\frac{1}{2} \sigma_{2}^{2}\right) \mathrm{d} t \\
& +\sigma_{1} \sqrt{v_{t}} \mathrm{~d} B_{t}^{\mathbb{Q}^{T}}+\sigma_{2} \mathrm{~d} Z_{t}^{\mathbb{Q}^{T}}
\end{aligned}
$$

where $b(t)$ and $h(t)$ are functions in the zero-coupon bond price:

$$
P(t, T)=e^{a(t, T)+b(t, T) r+h(t, T) v}
$$

- Short rate:

$$
\mathrm{d} r_{t}=\left[-K^{\mathbb{Q}}\left(r_{t}-\bar{r}^{\mathbb{Q}}\right)+\left(b(t) \sigma_{r}^{2}+\rho_{r v} h(t) \sigma_{r} \sigma_{v}\right) v_{t}\right] \mathrm{d} t+\sigma_{r} \sqrt{v_{t}} \mathrm{~d} B_{r t}^{\mathbb{Q}^{T}}
$$

Monotonicity of Short Rate

- Consider two short rate process: $r_{t}^{\mathcal{A}}$ and $r_{t}^{\mathcal{B}}$ with $r_{0}^{\mathcal{A}}>r_{0}^{\mathcal{B}}$.
- Claim: $r_{t}^{\mathcal{A}}>r_{t}^{\mathcal{B}}$ for all $t \in[0, T]$.
- Sketch of proof: If there exists $t_{0} \in(0, T]$ such that $r_{t_{0}}^{\mathcal{A}}=r_{t_{0}}^{\mathcal{B}}$, then it $r_{t}^{\mathcal{A}}$ will be identical to $r_{t}^{\mathcal{B}}$ onward. By countinuity argument, this contradicts to $r_{0}^{A}>r_{0}^{\mathcal{B}}$.

Firm Value under \mathbb{Q}^{T}

- Firm value

$$
\begin{aligned}
V_{T} & =V_{0} \exp \left[\int _ { 0 } ^ { T } \left(r_{t}+\left(b(t) \rho_{r} \sigma_{1} \sigma_{r}+\rho_{v} h(t) \sigma_{1} \sigma_{v}-\frac{1}{2} \sigma_{1}^{2}\right) v_{t}\right.\right. \\
& \left.\left.-\frac{1}{2} \sigma_{2}^{2}\right) \mathrm{~d} t+\sigma_{1} \int_{0}^{T} \sqrt{v_{t}} \mathrm{~d} B_{t}^{\mathbb{Q}^{T}}+\sigma_{2} Z_{T}^{\mathbb{Q}^{T}}\right]
\end{aligned}
$$

- V_{T} is strictly increasing with r_{0} under \mathbb{Q}^{T}.
- The yield spread is decreasing with r_{0} since

$$
\Delta_{0}=-\frac{1}{T} \ln \frac{1}{F} \mathbb{E}^{\mathbb{Q}^{T}}\left[\min \left(V_{T}, F\right)\right]
$$

CIR Model

- Firm Value:

$$
\mathrm{d} V_{t}=r_{t} V_{t} \mathrm{~d} t+\sigma_{1} \sqrt{r_{t}} V_{t} \mathrm{~d} B_{r t}^{Q}+\sigma_{2} V_{t} \mathrm{~d} B_{t}^{Q}
$$

- Short Rate:

$$
\mathrm{d} r_{t}=-K^{Q}\left(r_{t}-\bar{r}^{Q}\right) \mathrm{d} t+\sigma_{r} \sqrt{r_{t}} \mathrm{~d} B_{r t}^{Q}
$$

- Correlation: $\mathrm{d} B_{t}^{Q} \mathrm{~d} B_{r t}^{Q}=\rho \mathrm{d} t$

T-forward Measure

- Under \mathbb{Q}^{T}, log firm value $\left(x_{t}\right)$ follows:

$$
\mathrm{d} x_{t}=\left[r_{t}+b(t, T) \sigma_{1} \sigma_{r} r_{t}-\frac{1}{2}\left(\sigma_{1}^{2} r_{t}+\sigma_{2}^{2}\right)\right] \mathrm{d} t+\sigma_{1} \sqrt{r_{t}} \mathrm{~d} B_{r t}^{\mathbb{Q}^{T}}+\sigma_{2} \mathrm{~d} B_{t}^{\mathbb{Q}^{T}}
$$

where $b(t, T)$ is given in the zero-coupon price:

$$
P(t, T)=e^{a(t, T)+b(t, T) r_{t}}
$$

- Short Rate:

$$
\mathrm{d} r_{t}=\left[-K^{\mathbb{Q}}\left(r_{t}-\bar{r}^{\mathbb{Q}}\right)+b(t, T) \sigma_{r}^{2} r_{t}\right] \mathrm{d} t+\sigma_{r} \sqrt{r_{t}} \mathrm{~d} B_{r t}^{\mathbb{Q}^{T}}
$$

Coefficient of r_{t}

- CIR model has been proved that has unique strong solution ${ }^{1}$.
- The property $r_{t}^{\mathcal{A}}>r_{t}^{\mathcal{B}}$ when $r_{0}^{\mathcal{A}}>r_{0}^{\mathcal{B}}$ preserves.
- The coefficient of r_{t} in x_{t} is

$$
1+b(t, T) \sigma_{1} \sigma_{r}-\frac{1}{2} \sigma_{1}^{2}
$$

- When σ_{1} is large enough, r_{0} will negatively contribute to x_{t} hence the yield spread will increase
- When $\sigma_{1}=0$, the yield spread is decreasing with r_{0}.

[^0]
Conclusion

- To establish an increasing relationship between r_{0} and Δ_{0}, we must incorporate r_{t} into the volatility term of V_{t}.

[^0]: ${ }^{1}$ Yamada and Watanabe (1971)

