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Agenda

Brief Review the lecture slides
Review sample finals
Review Lecture Slides!!!
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OLS

Conditional Expectation: E[E[X|Y]] = E[X]

Consider following regression model

yt = x′tβ + εt (1)

Critical Assumptions for consistency: Cov(xt, εt) = 0
Derivation for OLS estimator:

Q(β) :=
1
T

T

∑
t=1

(yt − x′tβ)
2, β̂OLS = argmin

β

Q(β) (2)

First Order Condition (FOC):

∂Q
∂βi

= 0, ∀i = 1, · · · , K (3)
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OLS - Hypothesis Test

t-test: Suppose that we estimate the following regression:

yt = β0 + β1xt + εt (4)

we get β̂1 = 1.841, the standard error is SE(β̂1) = 0.423. Also, we
have T = 30 observations. We want to test

H0 : β1 = 1 v.s. H1 : β1 ̸= 1 (5)

t-statistics: t = β̂1−1
SE(β̂1)

= (1.841 − 1)/0.423 = 1.988

Degree of freedom: T − K = 30 − 2 = 28
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Stationary

Let {xt}∞
t=0 be a time series.

If {xt} satisfies
▶ E[xt] = µ, does not depend on t.
▶ ∀j, Cov(xt, xt−j) = γ(j), ∀t > j, does not depend on t.

Then we call {xt} is covariance stationary, or weakly stationary.
We will take about non-stationary processes later.
AR(p) process:

Yt =
p

∑
i=1

ϕiYt−i + εt (6)

εt has to be white noise.
Tests? Box-Pierce Test; Ljung-Box; Durbin Watson Test
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Bias

When ϕ is close to 1, then AR(1) is persistent.
Consider the following regression system{

yt = α + βxt−1 + εt

xt = c + ϕxt−1 + ut
(7)

Then

E[ϕ̂ − ϕ] = −1 + 3ϕ

T
+ O(1/T2), E[β̂ − β] =

σεu

σ2
u

E[ϕ̂ − ϕ] (8)
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VAR

Consider the following regression

Zt = α + ΦZt−1 + εt (9)

Stationary condition: max |λ(Φ)| < 1
Granger Casuality Test:{

rt = α1 + β11rt−1 + β12σt−1 + ε1,t

σt = α2 + β21rt−1 + β22σt−1 + ε2,t
(10)

Hypothesis 1: "σt−1 Granger-causes rt", we test β12 = 0
Hypothesis 2: "rt−1 Granger-causes σt", we test β21 = 0
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Non-stationary Processes/ DF Test

Suppose that pt and qt are non-stationary. Consider regression:
pt = γqt + εt

γ̂ does not converge to true γ.
t-stats is also not consistent.
Tests for non-stationarity: consider the following regression:

pt = c + ϕpt−1 + εt (11)

Dickey-Fuller (DF) Test: H0 : ϕ = 1, H1 : ϕ < 1

Test: t = ϕ̂−1
SE(ϕ̂)

t is NOT asymptotic normal.
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ADF Test

pt = c + ϕpt−1 + εt

Now suppose that εt ∼ ARMA(p, q).
To get rid of ARMA(p, q) parameters, which will influence DF test,
we run the following regression:

pt = ϕpt−1 + ζ1∆pt−1 + · · ·+ ζk∆pt−k + vt (12)

Test statistics: t = ϕ̂−1
SE(ϕ̂)

Equivalent way: Let ∆pt := pt − pt−1. Then run the following
regression:

∆pt = c + δpt−1 + ζ1∆pt−1 + · · ·+ ζk∆pt−k + vt (13)

Test statistics: t = δ̂
SE(δ̂)
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Spurious Regression

Suppose that pt = pt−1 + ut, qt = qt−1 + vt and Cov(ut, vt) = 0
Run regression: pt = γqt + εt

γ̂ will not converge to 0
t = γ̂

SE(γ̂) will diverge

R2 does not converge to 0
However, if you believe that pt and qt are cointegrated, i.e. the linear
combination of pt and qt is stationary, then it is OK to run regression.
Another way is taking first difference. ∆pt = pt − pt−1. Then run
regression (if ∆pt is stationary) ∆pt = γ∆qt + εt
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Empirical Results in Finance

Fama-French: Three factors:

Ri
t − r f = αi + β1,i(RM

t − r f ) + β2,iRSMB
t + β3,iRHML

t + εt (14)

SMB (Small Minus Big) = Historic excess returns of small-cap
companies over large-cap companies
HML (High Minus Low) = Historic excess returns of value stocks
(high book-to-price ratio) over growth stocks (low book-to-price ratio)
We believe small firms are riskier and command a risk premium
relative to large firms.
We believe value firms are riskier and command a risk premium
relative to growth firms
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Empirical Results in Finance-Campbell-Shiller

Campbell-Shiller decomposition

dpt = − κ

1 − ρ
+ Et

[
∞

∑
j=0

ρjrt+j+1 −
∞

∑
j=0

ρj∆dt+j+1

]
(15)

Meaning: The log dividend yield dpt has to forecast either
▶ Future returns, with a postive sign
▶ Future dividend growth, with a negative sign
▶ Or both
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MLE

Make sure you know the pdf of normal: N(µ, σ2)

f (x) =
1√
2πσ

e−
(x−µ)2

2σ2 (16)

You should be able to derive the MLE for β in the following regression

yt = βxt + εt, εt ∼ N(0, σ2), i.i.d (17)
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Volatility Models

Realized Volatility: Note that

Vart(rt+1) = Et[(rt+1 − Et(rt+1))
2] = Et[r2

t+1]− (Et[rt+1])
2

One way to estimate is using residual: et = rt+1 − Et[rt+1]

Implied Volatility: Volatility inferred from option prices (BS-formula)
Run AR(1) regression for volatility: R2 is large. Volatility is much
more forecastable than are simple returns!
Relation between Bi-Power Variation (BV) and Realized Volatility
(RV):

RVt+1 − BVt+1
∆→0−−→ ∑

t<s≤t+1
κ2(s) (18)
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ARCH & GARCH
Return:

rt = µ + ϕrt−1 + ut (19)

ARCH: u2
t follows AR(p)

u2
t = ζ + α1u2

t−1 + α2u2
t−2 + · · ·+ αpu2

t−p + wt (20)

Alternative representation: ut =
√

htvt

GARCH(1,1):
ht = ζ + δht−1 + αu2

t−1 (21)

GARCH(p,q):

ht = ζ +
q

∑
i=1

αiu2
t−i +

p

∑
j=1

β jht−j

IGARCH(1,1) is GARCH(1,1) when δ + α = 1
AsyGARCH: Negative surprises increase volatility more than positive
surprises
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ARCH & GARCH

Can you estimate ARCH with OLS? Yes
Can you estimate GARCH with OLS? No
Persistence? ARCH: No; GARCH: Yes
For most practical purposes a GARCH(1,1) is GREAT
Test of Homoskedasticity vs ARCH(p):
Consider

u2
t = ζ + α1u2

t−1 + α2u2
t−2 + · · ·+ αpu2

t−p + wt (22)

Engle (1982): Lagrange Multiplier-type test
▶ Regress Yt on Yt−1 to get ût
▶ Regress û2

t on û2
t−1, · · · , û2

t−p.
▶ Get R2 from this regression
▶ T · R2 ∼ χ2(m)
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ARCH & GARCH

Testing Nested GARCH(p,q) Models:
Estimating GARCH(1,1), get log-likelihood function Λ(θ0)

Estimating GARCH(2,2), get log-likelihood function Λ(θ1)

Note that GARCH(1,1) is a special case of GARCH(2,2) (take
α2 = δ2 = 0)
Hence Λ(θ0) < Λ(θ1)

Likelihood ratio:

LR = 2(Λ(θ1)− Λ(θ0)) ∼ χ2(2) (23)
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Sample Final (2015) Question 1

(1) The GARCH(1,1) is a simple and elegant model of volatility and
its in-sample and out-of-sample performance are difficult to beat by
other, more complicated models
True. See Lecture Slides 8 page 25.
What are the advantages and disadvantages of GARCH? Why
GARCH is successful?
See Lecture Slides 8 page 35.
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Sample Final (2015) Question 1

(2) Stock returns at 5-minute, daily, weekly, and monthly frequency
are equally serially uncorrelated.
False. This question is related to market microstructure. At higher
data frequencies, noise is less likely to be smoothed out.
Consequently, high-frequency data exhibits lower serial correlation.
(4) The CAPM is a useful benchmark because it explains a great deal
of the cross-sectional variation in returns.
Actually this question can be answered both sides. CAPM is simple
but useful. However it can not explain a great deal of cross-sectional
returns.
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Sample Final (2015) Question 1

(5) 3-factor Fama-French model can be estimated using only
time-series regressions. In fact, any 3-factor model can be estimated
using only one time-series regression.
False. Note that CAPM and Fama-French are cross-sectional
regressions. Not time series regression.
(9) A non-linear model with more parameters will always do a better
job at forecasting out-of-sample than a simpler linear model with
fewer parameters.
False. Model with more parameters is subject to large estimation
errors that may lead to poor out-of-sample performance.
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Sample Final (2015) Question 3

Simplified question: Suppose that you have the information of option
markets. What information from the options market do you think will be
useful to estimate conditional mean and conditional variance of stock
return?
(1) Suppose your variable is X. Then how will you estimate µt|t−1 using
Xi,t−1?
(2) Why it is not a good idea to run regression:

Ri,t = ηi + δiXi,t + ui,t (24)

Implied volatility will help us to predict returns in stock market.
For question (2), think about the Cov(Xi,t, ui,t). Stock price Pi,t is
used to calculate Ri,t. Also, Pi,t is in the derivation of Xi,t. Then
there is endogeneous problem.
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