Review Session 1: Homework 3 & OLS Regression

Jiahui Shui jishui@ucsd.edu

Rady School of Management, UCSD

November 8, 2024

Hints for HW3 & Handouts

- ▶ Period: January 1926 until December 2018
- ▶ CRSP_vw and CRSP_vwx: with / without dividends
- ▶ Don't spend to much time on Question 8 and 9
- ▶ Handout 1: OLS regression, Campbell-Shiller decomposition and Stambaugh Bias.

Conditional Expectations

Consider $\mathbb{E}[X|Y]$.

- If X and Y are independent, then $\mathbb{E}[X|Y] = \mathbb{E}[X]$
- **If** X is $\sigma(Y)$ -measurable, then $\mathbb{E}[X|Y] = X$. In particular, $\mathbb{E}[f(Y)|Y] = f(Y)$
- \blacktriangleright $\mathbb{E}[Xf(Y)|Y] = f(Y)\mathbb{E}[X|Y]$ (pulling out known factors)
- \blacktriangleright $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$. Law of Iterated Expectation

Q: Suppose that X, Y are i.i.d, what is $\mathbb{E}[X|X+Y]$. Hint: What is $\mathbb{E}[X + Y | X + Y]$.

Regression Review (Small/Finite Sample)

▶ Vector form:

$$
y_t = x_t'\beta + \varepsilon_t
$$

▶ Matrix form:

$$
y = X\beta + \varepsilon
$$

In finite sample theory, we have 4 assumptions:

\n- ▶ (H1) Linear Model:
$$
y = X\beta + \varepsilon
$$
\n- ▶ (H2) Strict Exogeneity: $\mathbb{E}[\varepsilon_i|X] = 0$
\n- ▶ $\mathbb{E}[y|X] = X\beta$
\n- ▶ $\mathbb{E}[\varepsilon_i] = 0$
\n- ▶ $\mathbb{E}[\varepsilon_i x_{j,k}] = 0, \forall j, k$
\n- ▶ Cov($\varepsilon_i, x_{j,k}$) = 0, $\forall j, k$
\n- ▶ (H3) No Multicolinearity: rank(X) = K
\n- ▶ (H4) Spherical disturbance: Var($\varepsilon | X$) = $\sigma^2 I_n$
\n- ▶ Conditional Homoskedasticity: $\mathbb{E}[\varepsilon_i^2 | X] = \sigma^2, \forall i$
\n- ▶ No correlation: $\mathbb{E}[\varepsilon_i \varepsilon_j | X] = 0, \forall i \neq j$
\n

Regression Review (Large Sample)

- ▶ (**A1**): Linear model. y = X*β* + *ε*
- ▶ (A2): Ergodic stationarity: $\{y_t, x_t\}$ is stationary and ergodic. (If two processes are far enough, say x_k and x_{t+k} as $t \to \infty$, then they can be thought as "independent")
- ▶ (A3): (Predetermined regressors): $\mathbb{E}[x_{t,i} \varepsilon_t] = 0$, $\forall i, t$. Define $g_t = x_t \varepsilon_t$, then $\mathbb{E}[g_t] = 0$.

• **(A4)**:
$$
\mathbb{E}[x_t x_t']
$$
 has full rank.

▶ (A5): $\mathbb{E}[g_t g_t'] < \infty$ and g_t is a martingale difference sequence. Also, $\mathbb{E}[g_t g_t']$ has full rank.

Regression Review (Large Sample)

 \triangleright Under A1-A4 \Rightarrow plim_{T→∞} $\hat{\beta} = \beta$.

 \blacktriangleright Additionally, if we have A5, then

$$
\sqrt{T}(\hat{\beta} - \beta) \xrightarrow{d} N(0, \text{Avar}(\hat{\beta}))
$$
 (1)

where

$$
Avar(\hat{\beta}) = \Sigma_{xx}^{-1} S \Sigma_{xx}^{-1}, \quad \Sigma_{xx} = \mathbb{E}[x_t x_t'], \quad S = \mathbb{E}[g_t g_t'] \quad (2)
$$

If x_t is a scalar, then

$$
\Sigma_{xx} = \sigma_x^2, \quad S = \mathbb{E}[x_t^2 \varepsilon_t^2], \quad \text{Avar}(\hat{\beta}) = \frac{\mathbb{E}[x_t^2 \varepsilon_t^2]}{\sigma_x^4}
$$

Remark: In lecture 3, Professor Valkanov wrote "intuitively" $\text{Avar}(\hat{\beta}) = \sigma_{\varepsilon}^2/\sigma_{\mathsf{x}}^2$. This requires additional assumption that $\mathbb{E}[x_t^2 \varepsilon_t^2] = \mathbb{E}[x_t^2] \mathbb{E}[\varepsilon_t^2]$

Econometric issues in return predictability

Consider the following system

$$
r_{t+1} = \alpha + \beta dp_t + \varepsilon_{t+1}
$$

\n
$$
dp_{t+1} = \mu + \phi dp_t + u_{t+1}
$$
\n(3)

- ▶ In this system, dp_t is highly persistent $(\phi \approx 1)$, $\beta > 0$.
- ▶ Now we suppose that $\mathbb{E}[dp_{t-1} \varepsilon_t] = 0$ by construction.
- ▶ *ϕ*ˆ tends to be downward biased. This is standard issue in OLS.

$$
\mathbb{E}[\hat{\phi}] = \phi - \frac{1+3\phi}{\mathcal{T}} + O(1/\mathcal{T}^2)
$$
 (4)

▶ And *β*ˆ is upward biased, which means that we reject the null of no predictability too often.

$$
\mathbb{E}[\hat{\beta} - \beta] = \frac{\sigma_{\varepsilon u}}{\sigma_u^2} \mathbb{E}[\hat{\phi} - \phi] = -\frac{\sigma_{\varepsilon u}}{\sigma_u^2} \frac{1 + 3\phi}{T}
$$
(5)

▶ Q: Why *σε*^u *<* 0? A positive dp shock usually has no news about dividends, so it means a negative p shock and a negative r shock.

1. Consider the following regression equation

$$
y_t = \alpha + \beta x_t + \varepsilon_t \tag{6}
$$

Assume that $\mathbb{E}[\varepsilon_t|x_t] = 0$ for all t.

(a) Prove that $\mathbb{E}[\varepsilon_t|x_t]=0$ implies $\mathbb{E}[\varepsilon_t x_t]=0$

(b) Find the OLS estimator *α*ˆ and *β*ˆ

(c) Let $\hat{y}_t := \hat{\alpha} + \hat{\beta}x_t$. Define $e_t = y_t - \hat{y}_t$. Show that

$$
\sum_{t=1}^T e_t = 0
$$

(d) Show that $\hat{\beta}$ is unbiased, i.e. $\mathbb{E}[\hat{\beta}|X] = \beta$, where $X = (x_1, \cdots, x_T)'$

(e) Now, consider the following regression equation

$$
y_t = \beta x_t + \varepsilon_t \tag{7}
$$

Find the OLS estimator $\hat{\beta}$. Calculate $\sum_{t=1}^{T} e_t$ again.

2. Consider the following AR(1) process

$$
x_t = \rho x_{t-1} + \varepsilon_t \tag{8}
$$

where $|\rho| < 1$, $\{\varepsilon_t\}_{t=0}^\infty$ is white noise with variance σ^2 . Suppose that $\mathbb{E}[x_{t-1} \varepsilon_t] = 0$. (a) Is the OLS estimator *ρ*ˆ unbiased? Is *ρ*ˆ consistent?

(b) Find $\mathbb{E}[x_t]$ and $\text{Var}(x_t)$

3. Consider the following regression

$$
y_t = \alpha + \beta y_{t-1} + u_t
$$

\n
$$
u_t = v_t + \theta v_{t-1}
$$
\n(9)

where v_t is i.i.d with mean 0 and variance σ^2 . Is the OLS estimator $\hat{\beta}$ unbiased? Is it consistent?