Review Session 1: Homework 3 & OLS Regression

Jiahui Shui jishui@ucsd.edu

Rady School of Management, UCSD

November 8, 2024

Hints for HW3

- Period: January 1926 until December 2018
- CRSP_vw and CRSP_vwx: with / without dividends
- Don't spend to much time on Question 8 and 9

Conditional Expectations

Consider $\mathbb{E}[X|Y]$.

- ▶ If X and Y are independent, then $\mathbb{E}[X|Y] = \mathbb{E}X$
- If X is $\sigma(Y)$ -measurable, then $\mathbb{E}[X|Y] = X$. In particular, $\mathbb{E}[f(Y)|Y] = f(Y)$
- ▶ $\mathbb{E}[Xf(Y)|Y] = f(Y)\mathbb{E}[X|Y]$ (pulling out known factors)
- $ightharpoonup \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$. Law of Iterated Expectation

Q: Suppose that X, Y are i.i.d, what is $\mathbb{E}[X|X+Y]$. Hint: What is $\mathbb{E}[X+Y|X+Y]$.

Regression Review (Small/Finite Sample)

Vector form:

$$y_t = x_t' \beta + \varepsilon_t$$

Matrix form:

$$y = X\beta + \varepsilon$$

In finite sample theory, we have 4 assumptions:

- ▶ (**H1**) Linear Model: $y = X\beta + \varepsilon$
- ▶ (**H2**) Strict Exogeneity: $\mathbb{E}[\varepsilon_i|X] = 0$
 - $\mathbb{E}[y|X] = X\beta$
 - $ightharpoonup \mathbb{E}[\varepsilon_i] = 0$
 - $\mathbb{E}[\varepsilon_i x_{i,k}] = 0, \forall j, k$
- ▶ (**H3**) No Multicollinearity: rank(X) = K
- ▶ **(H4)** Spherical disturbance: $Var(\varepsilon|X) = \sigma^2 I_n$
 - ▶ Conditional Homoskedasticity: $\mathbb{E}[\varepsilon_i^2|X] = \sigma^2, \forall i$
 - No correlation: $\mathbb{E}[\varepsilon_i \varepsilon_j | X] = 0, \forall i \neq j$

Regression Review (Large Sample)

- ▶ (A1): Linear model. $y = X\beta + \varepsilon$
- ▶ (A2): Ergodic stationarity: $\{y_t, x_t\}$ is stationary and ergodic. (If two processes are far enough, say x_k and x_{t+k} as $t \to \infty$, then they can be thought as "independent")
- ▶ (A3): (Predetermined regressors): $\mathbb{E}[x_{t,i}\varepsilon_t] = 0$, $\forall i, t$. Define $g_t = x_t\varepsilon_t$, then $\mathbb{E}[g_t] = 0$.
- ▶ (**A4**): $\mathbb{E}[x_t x_t']$ has full rank.
- ▶ (A5): $\mathbb{E}[g_t g_t'] < \infty$ and g_t is a martingale difference sequence. Also, $\mathbb{E}[g_t g_t']$ has full rank.

Regression Review (Large Sample)

- ▶ Under A1-A4 \Rightarrow plim $_{T\to\infty} \hat{\beta} = \beta$.
- ► Additionally, if we have A5, then

$$\sqrt{T}(\hat{\beta} - \beta) \xrightarrow{d} N(0, \operatorname{Avar}(\hat{\beta}))$$
 (1)

where

$$\operatorname{Avar}(\hat{\beta}) = \Sigma_{xx}^{-1} S \Sigma_{xx}^{-1}, \quad \Sigma_{xx} = \mathbb{E}[x_t x_t'], \quad S = \mathbb{E}[g_t g_t'] \quad (2)$$

If x_t is a scalar, then

$$\Sigma_{xx} = \sigma_x^2, \quad S = \mathbb{E}[x_t^2 \varepsilon_t^2], \quad \text{Avar}(\hat{\beta}) = \frac{\mathbb{E}[x_t^2 \varepsilon_t^2]}{\sigma_x^4}$$

Remark: In lecture 3, Professor Valkanov wrote "intuitively" $\operatorname{Avar}(\hat{\beta}) = \sigma_{\varepsilon}^2/\sigma_{\chi}^2$. This requires additional assumption that $\mathbb{E}[x_t^2 \varepsilon_t^2] = \mathbb{E}[x_t^2] \mathbb{E}[\varepsilon_t^2]$

Econometric issues in return predictability

Consider the following system

$$r_{t+1} = \alpha + \beta dp_t + \varepsilon_{t+1}$$

$$dp_{t+1} = \mu + \phi dp_t + u_{t+1}$$
(3)

- ▶ In this system, dp_t is highly persistent $(\phi \approx 1)$, $\beta > 0$.
- Now we suppose that $\mathbb{E}[dp_{t-1}\varepsilon_t] = 0$ by construction.
- $ightharpoonup \hat{\phi}$ tends to be downward biased. This is standard issue in OLS.

$$\mathbb{E}[\hat{\phi}] = \phi - \frac{1+3\phi}{T} + O(1/T^2) \tag{4}$$

And $\hat{\beta}$ is upward biased, which means that we reject the null of no predictability too often.

$$\mathbb{E}[\hat{\beta} - \beta] = \frac{\sigma_{\varepsilon u}}{\sigma_{u}^{2}} \mathbb{E}[\hat{\phi} - \phi] = -\frac{\sigma_{\varepsilon u}}{\sigma_{u}^{2}} \frac{1 + 3\phi}{T}$$
 (5)

▶ Q: Why $\sigma_{\varepsilon u}$ < 0? A positive dp shock usually has no news about dividends, so it means a negative p shock and a negative r shock.

1. Consider the following regression equation

$$y_t = \alpha + \beta x_t + \varepsilon_t \tag{6}$$

Assume that $\mathbb{E}[\varepsilon_t|x_t] = 0$ for all t.

(a) Prove that $\mathbb{E}[arepsilon_t|x_t]=0$ implies $\mathbb{E}[arepsilon_tx_t]=0$

Solution: By Law of Iterated Expection, we have

$$\mathbb{E}[\varepsilon_t x_t] = \mathbb{E}[\mathbb{E}[\varepsilon_t x_t | x_t]] = \mathbb{E}[x_t \mathbb{E}[\varepsilon_t | x_t]] = 0 \tag{7}$$

(b) Find the OLS estimator $\hat{\alpha}$ and $\hat{\beta}$

Solution: Define

$$Q(\alpha, \beta) = \sum_{t=1}^{T} (y_t - \alpha - \beta x_t)^2$$
 (8)

The FOCs are

$$\frac{\partial Q}{\partial \alpha} = -2 \sum_{t=1}^{T} (y_t - \alpha - \beta x_t) = 0$$

$$\frac{\partial Q}{\partial \beta} = -2 \sum_{t=1}^{T} (y_t - \alpha - \beta x_t) x_t = 0$$
(9)

The first equation can be simplified as $\bar{y} = \hat{\alpha} + \hat{\beta}\bar{x}$. Substitute this into the second equation, we get

$$\hat{\beta} = \frac{\sum_{t=1}^{T} x_t y_t - T\bar{x}\bar{y}}{\sum_{t=1}^{T} x_t^2 - T\bar{x}^2}$$
 (10)

(c) Let
$$\hat{y}_t := \hat{\alpha} + \hat{\beta} x_t$$
. Define $e_t = y_t - \hat{y}_t$. Show that

$$\sum_{t=1}^T e_t = 0$$

Solution: We have

$$\sum_{t=1}^{T} e_t = \sum_{t=1}^{T} (y_t - \hat{\alpha} - \hat{\beta} x_t)$$
 (11)

Note that this is just the first FOC.

(d) Show that $\hat{\beta}$ is unbiased, i.e. $\mathbb{E}[\hat{\beta}|X] = \beta$, where $X = (x_1, \cdots, x_T)'$

Solution: Note that

$$\mathbb{E}[\hat{\beta}|X] = \mathbb{E}\left[\frac{\sum_{t=1}^{T} x_t y_t - T\bar{x}\bar{y}}{\sum_{t=1}^{T} x_t^2 - T\bar{x}^2} \middle| X\right] = \frac{\sum_{t=1}^{T} x_t \mathbb{E}[y_t|X] - T\bar{x}\mathbb{E}[\bar{y}|X]}{\sum_{t=1}^{T} - T\bar{x}^2}$$
(12)

and

$$\mathbb{E}[y_t|X] = \mathbb{E}[\alpha + \beta x_t + \varepsilon_t|X] = \alpha + \beta x_t \tag{13}$$

Then

$$\mathbb{E}[\bar{y}|X] = \frac{1}{T}\mathbb{E}[\sum_{t=1}^{T} y_t|X] = \alpha + \beta\bar{x}$$
 (14)

Substituting those two equations into equation (12) yields

$$\mathbb{E}[\hat{\beta}|X] = \beta \tag{15}$$

Notes: Unbiased property requires $\mathbb{E}[\varepsilon_t|X] = 0$.

(e) Now, consider the following regression equation

$$y_t = \beta x_t + \varepsilon_t \tag{16}$$

Find the OLS estimator $\hat{\beta}$. Calculate $\sum_{t=1}^{T} e_t$ again.

Solution: Now

$$Q(\beta) = \sum_{t=1}^{T} (y_t - \beta x_t)^2$$
 (17)

The FOC gives us

$$\frac{\partial Q(\beta)}{\beta} = -2\sum_{t=1}^{T} (y_t - \beta x_t) x_t = 0 \Rightarrow \hat{\beta} = \frac{\sum_{t=1}^{T} x_t y_t}{\sum_{t=1}^{T} x_t^2}$$
(18)

Now $\sum_{t=1}^{T} e_t$ is not necessarily to be 0.

$$\sum_{t=1}^{T} e_t = \sum_{t=1}^{T} y_t - \frac{\sum_{t=1}^{T} x_t y_t}{\sum_{t=1}^{T} x_t^2} \sum_{t=1}^{T} x_t$$
 (19)

2. Consider the following AR(1) process

$$x_t = \rho x_{t-1} + \varepsilon_t \tag{20}$$

where $|\rho| < 1$, $\{\varepsilon_t\}_{t=0}^{\infty}$ is white noise with variance σ^2 . Suppose that $\mathbb{E}[x_{t-1}\varepsilon_t] = 0$.

(a) Is the OLS estimator $\hat{\rho}$ unbiased? Is $\hat{\rho}$ consistent?

Solution: No, $\hat{\rho}$ is biased. Since unbiased estimation requires that $\mathbb{E}[\varepsilon_t|X]=0$, meaning ε_t is uncorrelated with all x_t , both past and future. Obviously here ε_t is correlated to future x_t . But $\hat{\rho}$ is consistent. Consistency only requires predetermined explanatory variables, i.e. $\mathbb{E}[x_{t-1}\varepsilon_t]=0$.

(b) Find $\mathbb{E}[x_t]$ and $\operatorname{Var}(x_t)$

Solution: There are some tricks here. If we impose x_t is stationary here, then $\mathbb{E}[x_t] = \mathbb{E}[x_{t-1}], \mathrm{Var}(x_t) = \mathrm{Var}(x_{t-1})$. Hence

$$\mathbb{E}[x_t] = \rho \mathbb{E}[x_{t-1}] \Rightarrow \mathbb{E}[x_t] = 0 \tag{21}$$

$$\operatorname{Var}(x_t) = \rho^2 \operatorname{Var}(x_{t-1}) + \sigma^2 \Rightarrow \operatorname{Var}(x_t) = \frac{\sigma^2}{1 - \rho^2}$$
 (22)

3. Consider the following regression

$$y_t = \alpha + \beta y_{t-1} + u_t$$

$$u_t = v_t + \theta v_{t-1}$$
(23)

where v_t is i.i.d with mean 0 and variance σ^2 . Is the OLS estimator $\hat{\beta}$ unbiased? Is it consistent?

Solution: Consider

$$Cov(y_{t-1}, u_t) = Cov(v_{t-1} + \theta v_{t-2}, v_t + \theta v_{t-1}) = \theta \sigma^2$$

Hence it is biased and not consitent.