Review Session 2: VAR, MLE

Jiahui Shui jishui@ucsd.edu

Rady School of Management, UCSD

November 15, 2024

Stationary: Recall

Let $\{x_t\}_{t=0}^{\infty}$ be a time series. Definition (Covariance Stationary) If $\{x_t\}$ satisfies \blacktriangleright $\mathbb{E}[x_t] = \mu$, does not depend on t. \blacktriangleright ∀j, $Cov(x_t, x_{t-j}) = \gamma(j), \forall t > j$, does not depend on t. Then we call $\{x_t\}$ is covariance stationary, or weakly stationary.

Definition (Ergodic)

A covariance stationary process is said to be ergodic for the mean if

$$
\plim_{\mathcal{T}\to\infty} \frac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} x_t = \mu \tag{1}
$$

Stationarity For AR(p) Process

 \triangleright Consider the following AR(p) process:

$$
x_t = \phi_0 + \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + \varepsilon_t \qquad (2)
$$

 \blacktriangleright If the root of the following polynomial

$$
1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p = 0 \tag{3}
$$

lie outside the unit circle, i.e. for each (complex) root z_i , it satisfies $\vert z_{i}\vert>1$, then x_{t} is weak stationary.

$VAR(1)$

Consider the following regression

$$
Z_t = \alpha + \Phi Z_{t-1} + \varepsilon_t \tag{4}
$$

where Z_t is a vector time series. A 2-dimensional case is

$$
z_{1t} = \alpha_1 + \Phi_{11} z_{1,t-1} + \Phi_{12} z_{2,t-1} + \varepsilon_{1t}
$$

\n
$$
z_{2t} = \alpha_2 + \Phi_{21} z_{1,t-1} + \Phi_{22} z_{2,t-1} + \varepsilon_{2t}
$$
\n(5)

Stationary condition:

$$
\max \quad |\lambda(\Phi)| < 1 \tag{6}
$$

Why?

$VAR(p)$

▶ How about a more general form

$$
Z_t = \alpha + \Phi_1 Z_{t-1} + \dots + \Phi_p Z_{t-p} + \varepsilon_t \tag{7}
$$

 \triangleright Stationary condition: the roots of the following equation:

$$
\det(I_n - \Phi_1 z - \cdots - \Phi_p z^p) = 0 \tag{8}
$$

lie outside the unit circle, i.e. ∥z∥ *>* 1.

 \blacktriangleright When $p = 1$, the above condition becomes

$$
\det(I_n - \Phi_1 z) = |z| \det(1/z \cdot I_n - \Phi_1) = 0 \Rightarrow \det(1/z \cdot I_n - \Phi_1) = 0
$$
\n(9)

\n- $$
1/z
$$
 is eigenvalue of Φ_1
\n- $||z|| > 1 \Leftrightarrow ||1/z|| < 1 \Leftrightarrow \text{max} \quad |\lambda(\Phi_1)| < 1$
\n

Maximum Likelihood Estimation

- **►** Suppose that $f(y|\theta)$ is the conditional density function of random variable Y . That is, the distribution of Y depends on parameter θ , where $\theta \in \Theta$.
- \blacktriangleright Then we observe a series $\{y_t\}_{t=1}^T$. We can consider the joint density function of this 'observation' as a function of *θ*.
- ▶ Likelihood function:

$$
L(\theta) = \prod_{t=1}^{T} f(y_t | \theta)
$$
 (10)

▶ Log-likelihood function:

$$
\Lambda(\theta) = \log L(\theta) = \sum_{t=1}^{T} \log f(y_t | \theta)
$$
 (11)

 \blacktriangleright The MLE estimator is the value $\hat{\theta}$ that maximizes $\Lambda(\theta)$, i.e.

$$
\hat{\theta}^{\mathsf{MLE}} = \underset{\theta \in \Theta}{\operatorname{argmax}} \Lambda(\theta) = \underset{\theta \in \Theta}{\operatorname{argmax}} L(\theta) \tag{12}
$$

- \triangleright Suppose that there exists a unique interior solution.
- ▶ The FOC is

$$
\frac{\partial \Lambda(\theta)}{\partial \theta} = 0 \tag{13}
$$

- \blacktriangleright Here θ might be a vector.
- $▶$ Hessian matrix: $H(\theta) = \frac{\partial^2 \Lambda(\theta)}{\partial \theta \partial \theta'}$ *∂θ∂θ*′

A Simple Example: MLE for linear Regression

Consider the following regression:

$$
y_t = \beta x_t + \varepsilon_t \tag{14}
$$

Suppose that $\varepsilon_t \sim \mathcal{N}(0,\sigma^2)$ i.i.d. Find the MLE of β and σ^2

Exact MLE and Conditional MLE

 \blacktriangleright In the lecture, we considered MLE for AR(1) process:

$$
y_t = \phi y_{t-1} + \varepsilon_t \tag{15}
$$

Suppose that $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$ and i.i.d.

▶ Likelihood function

$$
L(\phi) = f_{y_1}(y_1|\phi) \prod_{t=2}^T f_{y_t|y_{t-1}}(y_t|y_{t-1}; \phi)
$$
 (16)

▶ For $t > 2$, we consider the **conditional** distribution of y_t given y_{t-1} . But for y_1 , we can only consider the unconditional distribution. $y_1 \sim \mathcal{N}(0, \sigma^2/(1-\phi^2))$

 \blacktriangleright The log likelihood function is

$$
\Lambda(\phi) = -\frac{7}{2}\log(2\pi) - \frac{7}{2}\log(\sigma^2) + \frac{1}{2}\log(1 - \phi^2) - \frac{y_1^2}{2\sigma^2/(1 - \phi^2)} - \sum_{t=2}^T \frac{(y_t - \phi y_{t-1})^2}{2\sigma^2} \tag{17}
$$

Exact MLE and Conditional MLE

- ▶ Exact MLE: Optimization with respect to Λ(*ϕ*)
- \triangleright Conditional MLE: Take y_1 as **known**. Then optimize the following function:

$$
\tilde{\Lambda}(\phi) = -\frac{T-1}{2}\log(2\pi) - \frac{T-1}{2}\log(\sigma^2) - \sum_{t=2}^{T} \frac{(y_t - \phi y_{t-1})^2}{2\sigma^2}
$$
\n(18)

- \triangleright When T is large enough, the contribution of y_1 to likelihood can be ignored.
- ▶ If |*ϕ*| *<* 1, then exact MLE and conditional MLE has same asymptotic distribution.
- ▶ If |*ϕ*| *>* 1, then conditional MLE is still **consistent** but exact MLE is not.

Cramér-Rao lower bound (Optional)

► Score function:
$$
s(\theta) := \frac{\partial \Lambda(\theta)}{\partial \theta}
$$

- ▶ Fisher Information: $I(\theta) = \mathbb{E}[\frac{\partial \Lambda(\theta)}{\partial \theta}]^2$
- ▶ Under certain condition, I(*θ*) = −E[H(*θ*)]

Theorem (Cramér-Rao Inequality)

Let X_1, \dots, X_n be a (i.i.d) sample with pdf $f(x|\theta)$ and Let $W = W(X_1, \dots, X_n)$ be any estimator for $g(\theta)$ satisfying

$$
\frac{\mathrm{d}}{\mathrm{d}\theta}\mathbb{E}[W(X)]=\int_{\mathcal{X}}\frac{\partial}{\partial\theta}[W(x_1,\cdots,x_n)f(x_1,\cdots,x_n|\theta)]\mathrm{d}x_1\cdots\mathrm{d}x_n\tag{19}
$$

Then

$$
\text{Var}(W) \ge \frac{\left(\frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}[W(X)]\right)^2}{I(\theta)}\tag{20}
$$

In particular, if $W(\theta) = \theta$, then $\text{Var}(\hat{\theta}) \geq [I(\theta)]^{-1}$

Exercise (Optional)

Suppose that $y_t = \beta x_t + \varepsilon_t$, with $\varepsilon_t \sim N(0, \sigma^2)$ i.i.d. Now find the Cramér-Rao lower bound for $\theta = (\beta, \sigma^2)'$.

Properties of MLE

- ▶ Consistency: $\text{plim}_{\mathcal{T}\rightarrow\infty}\hat{\theta}^{MLE}=\theta$
- ▶ Asymptotic variance: $Avar(\hat{\theta}^{MLE}) = T[I(\theta)]^{-1}$.
- **►** Asymptotic normal: $\sqrt{T}(\hat{\theta} \theta) \xrightarrow{d} N(0, T[I(\theta)]^{-1}).$ Intuitively, it can be thought as

$$
\hat{\theta}^{\text{MLE}} \sim N(\theta, [I(\theta)]^{-1}) \tag{21}
$$