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Stationary: Recall

Let {xt}∞
t=0 be a time series.

Definition (Covariance Stationary)
If {xt} satisfies
▶ E[xt ] = µ, does not depend on t.
▶ ∀j , Cov(xt , xt−j) = γ(j), ∀t > j , does not depend on t.

Then we call {xt} is covariance stationary, or weakly stationary.

Definition (Ergodic)
A covariance stationary process is said to be ergodic for the mean if

plim
T→∞

1
T

T∑
t=1

xt = µ (1)
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Stationarity For AR(p) Process

▶ Consider the following AR(p) process:

xt = ϕ0 + ϕ1xt−1 + ϕ2xt−2 + · · · + ϕpxt−p + εt (2)

▶ If the root of the following polynomial

1 − ϕ1z − ϕ2z2 − · · · − ϕpzp = 0 (3)

lie outside the unit circle, i.e. for each (complex) root zi , it
satisfies |zi | > 1, then xt is weak stationary.
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VAR(1)

Consider the following regression

Zt = α + ΦZt−1 + εt (4)

where Zt is a vector time series. A 2-dimensional case is

z1t = α1 + Φ11z1,t−1 + Φ12z2,t−1 + ε1t

z2t = α2 + Φ21z1,t−1 + Φ22z2,t−1 + ε2t
(5)

Stationary condition:

max |λ(Φ)| < 1 (6)

Why?
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VAR(p)

▶ How about a more general form

Zt = α + Φ1Zt−1 + · · · + ΦpZt−p + εt (7)

▶ Stationary condition: the roots of the following equation:

det(In − Φ1z − · · · − Φpzp) = 0 (8)

lie outside the unit circle, i.e. ∥z∥ > 1.
▶ When p = 1, the above condition becomes

det(In−Φ1z) = |z | det(1/z ·In−Φ1) = 0 ⇒ det(1/z ·In−Φ1) = 0
(9)

▶ 1/z is eigenvalue of Φ1
▶ ∥z∥ > 1 ⇔ ∥1/z∥ < 1 ⇔ max |λ(Φ1)| < 1
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Maximum Likelihood Estimation

▶ Suppose that f (y |θ) is the conditional density function of
random variable Y . That is, the distribution of Y depends on
parameter θ, where θ ∈ Θ.

▶ Then we observe a series {yt}T
t=1. We can consider the joint

density function of this ’observation’ as a function of θ.
▶ Likelihood function:

L(θ) =
T∏

t=1
f (yt |θ) (10)

▶ Log-likelihood function:

Λ(θ) = log L(θ) =
T∑

t=1
log f (yt |θ) (11)
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MLE

▶ The MLE estimator is the value θ̂ that maximizes Λ(θ), i.e.

θ̂MLE = argmax
θ∈Θ

Λ(θ) = argmax
θ∈Θ

L(θ) (12)

▶ Suppose that there exists a unique interior solution.
▶ The FOC is

∂Λ(θ)
∂θ

= 0 (13)

▶ Here θ might be a vector.
▶ Hessian matrix: H(θ) = ∂2Λ(θ)

∂θ∂θ′
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A Simple Example: MLE for linear Regression
Consider the following regression:

yt = βxt + εt (14)

Suppose that εt ∼ N(0, σ2) i.i.d. Find the MLE of β and σ2

Solution: Note that yt |β ∼ N(βxt , σ2), then

f (yt |β) = 1√
2πσ

e− (yt −βxt )2

2σ2

Then the likelihood function is

L(β) =
T∏

t=1

1√
2πσ

e− (yt −βxt )2

2σ2

The log-likelihood function is

Λ(β, σ2) = −T
2 log 2π − T

2 log(σ2) − 1
2σ2

T∑
t=1

(yt − βxt)2
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A Simple Example: MLE for linear Regression
Take derivative with respect to β, we get FOC

∂Λ
∂β

= 1
σ2

T∑
t=1

(yt − βxt)xt = 0

Hence
T∑

t=1
ytxt = β

T∑
t=1

x2
t ⇒ β̂MLE =

∑T
t=1 xtyt∑T
t=1 x2

t

Under i.i.d and normal assumptions, MLE estimator and OLS
estimator for linear regressions are the same.
For σ2, we have the FOC

∂Λ
∂σ2 = − T

2σ2 + 1
2σ4

T∑
t=1

(yt − βxt)2 = 0

Then

σ̂2
MLE = 1

T

T∑
t=1

(yt − βxt)2 = e′e
T

Recall the unbiased estimator for σ2 is s2 = e′e
T−1 .
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Exact MLE and Conditional MLE
▶ In the lecture, we considered MLE for AR(1) process:

yt = ϕyt−1 + εt (15)

Suppose that εt ∼ N(0, σ2) and i.i.d.
▶ Likelihood function

L(ϕ) = fy1(y1|ϕ)
T∏

t=2
fyt |yt−1(yt |yt−1; ϕ) (16)

▶ For t ≥ 2, we consider the conditional distribution of yt given
yt−1. But for y1, we can only consider the unconditional
distribution. y1 ∼ N(0, σ2/(1 − ϕ2))

▶ The log likelihood function is

Λ(ϕ) = −T
2 log(2π) − T

2 log(σ2) + 1
2 log(1 − ϕ2)

− y2
1

2σ2/(1 − ϕ2) −
T∑

t=2

(yt − ϕyt−1)2

2σ2

(17)
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Exact MLE and Conditional MLE

▶ Exact MLE: Optimization with respect to Λ(ϕ)
▶ Conditional MLE: Take y1 as known. Then optimize the

following function:

Λ̃(ϕ) = −T − 1
2 log(2π) − T − 1

2 log(σ2) − −
T∑

t=2

(yt − ϕyt−1)2

2σ2

(18)
▶ When T is large enough, the contribution of y1 to likelihood

can be ignored.
▶ If |ϕ| < 1, then exact MLE and conditional MLE has same

asymptotic distribution.
▶ If |ϕ| > 1, then conditional MLE is still consistent but exact

MLE is not.
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Cramér-Rao lower bound (Optional)
▶ Score function: s(θ) := ∂Λ(θ)

∂θ

▶ Fisher Information: I(θ) = E[∂Λ(θ)
∂θ ]2

▶ Under certain condition, I(θ) = −E[H(θ)]

Theorem (Cramér-Rao Inequality)
Let X1, · · · , Xn be a (i.i.d) sample with pdf f (x |θ) and Let
W = W (X1, · · · , Xn) be any estimator for g(θ) satisfying

d
dθ

E[W (X )] =
∫

X

∂

∂θ
[W (x1, · · · , xn)f (x1, · · · , xn|θ)]dx1 · · · dxn

(19)
Then

Var(W ) ≥
( d

dθE[W (X )])2

I(θ) (20)

In particular, if W (θ) = θ, then Var(θ̂) ≥ [I(θ)]−1
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Exercise (Optional)
Suppose that yt = βxt + εt , with εt ∼ N(0, σ2) i.i.d. Now find the
Cramér-Rao lower bound for θ = (β, σ2)′.
Recall from previous question:

Λ(β, σ2) = −T
2 log 2π − T

2 log(σ2) − 1
2σ2

T∑
t=1

(yt − βxt)2

We have
∂Λ
∂β

= 1
σ2

T∑
t=1

(yt − βxt)xt ,
∂Λ

∂(σ2) = − T
2σ2 + 1

2σ4

T∑
t=1

(yt − βxt)2

and
∂2Λ
∂β2 = − 1

σ2

T∑
t=1

x2
t ,

∂2Λ
∂(σ2)2 = T

2(σ2)2 − 1
(σ2)3

T∑
t=1

(yt − βxt)2

Also
∂2Λ

∂β∂(σ2) = ∂2Λ
∂σ2∂β

= − 1
(σ2)2

T∑
t=1

(yt − βxt)xt
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Exercise (Optional)
Note that

E
[

∂2Λ
∂β∂(σ2)

]
= − 1

(σ2)2

T∑
t=1

xt(E[yt − βxt ]) = 0

And

E
[

∂2Λ
∂β2

]
= 1

σ2

T∑
t=1

x2
t , E

[
∂2Λ

∂(σ2)2

]
= − T

2(σ2)2

Finally,

I(θ) = −E[H(θ)] =
( 1

σ2
∑T

t=1 x2
t 0

0 T
2(σ2)2

)
The Cramér-Rao lower bound in this case is

[I(θ)]−1 =
(

σ2(
∑T

t=1 x2
t )−1 0

0 2σ4

T

)
Remark: Note that Var(β̂OLS |X ) = σ2(

∑T
t=1 x2

t )−1, OLS
estimator for β achieves Cramér-Rao lower bounds. But unbiased
estimator for σ2, i.e. s2 has variance 2σ4/(T − 1).
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Properties of MLE

▶ Consistency: plimT→∞ θ̂MLE = θ

▶ Asymptotic variance: Avar(θ̂MLE ) = T [I(θ)]−1.
▶ Asymptotic normal:

√
T (θ̂ − θ) d−→ N(0, T [I(θ)]−1).

Intuitively, it can be thought as

θ̂MLE ∼ N(θ, [I(θ)]−1) (21)
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