Review Session 2: VAR, MLE

Jiahui Shui
jishui@ucsd.edu

Rady School of Management, UCSD

November 15, 2024

1/15



Stationary: Recall

Let {x:}?2, be a time series.
Definition (Covariance Stationary)
If {x;} satisfies

» E[x¢] = p, does not depend on t.

» Vj, Cov(x¢, xe—j) = v(j),Vt > j, does not depend on t.
Then we call {x;} is covariance stationary, or weakly stationary.
Definition (Ergodic)

A covariance stationary process is said to be ergodic for the mean if

plim —th (1)

T—>oo
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Stationarity For AR(p) Process

» Consider the following AR(p) process:
Xt = Qo+ P1Xe—1 + Paxe—2 + -+ Ppxe—p et (2)

» If the root of the following polynomial
1— 1z — ¢pz° — - — ¢pzP =0 (3)

lie outside the unit circle, i.e. for each (complex) root z;, it
satisfies |z;j| > 1, then x; is weak stationary.
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VAR(1)

Consider the following regression
Zt =+ ¢Zt_1 + &t (4)
where Z; is a vector time series. A 2-dimensional case is

21t =01+ Pr1z1 -1 + Prozo 11 + €1t
Zt = ax + Po1z1+1 + P2z 1 + €2t

Stationary condition:
max |A(P)] <1 (6)

Why?
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VAR(p)

» How about a more general form
Zi=a+®1L 1+ +PpLi_p+ ey (7)
> Stationary condition: the roots of the following equation:
det(fp —P1z— - —dpzP) =0 (8)

lie outside the unit circle, i.e. ||z|| > 1.

» When p = 1, the above condition becomes

det(/,—®1z) = |z|det(1/z-I,—P1) = 0 = det(1/z-/,—P1) =0
(9)
» 1/z is eigenvalue of ®;

> z]| >1< |1/z] <1e max  |[A(P1)] <1
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Maximum Likelihood Estimation

>

Suppose that f(y|6) is the conditional density function of
random variable Y. That is, the distribution of Y depends on
parameter 6, where 0 € ©.

Then we observe a series {y;}/_;. We can consider the joint
density function of this 'observation’ as a function of 6.

Likelihood function:

T
L) = T] f(l0) (10)
t=1
Log-likelihood function:
A(B) = log L(9) = 3" log (y:9) (11)

t=1
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MLE

» The MLE estimator is the value § that maximizes A(6), i.e.

OMLE — argmax A(6) = argmax L(60) (12)

0co 0cO

» Suppose that there exists a unique interior solution.

» The FOC is ON)
——— =0 13
50 (13)
» Here 6 might be a vector.
» Hessian matrix: H(0) = %29/\8(99,)
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A Simple Example: MLE for linear Regression
Consider the following regression:
Yt = Bxt + €t

Suppose that £; ~ N(0,02) i.i.d. Find the MLE of 8 and o2
Solution: Note that y;|3 ~ N(Bx¢,c?), then

1 (Yt—ﬁxt)2
202
(.Vt’/B) \/70_
Then the likelihood function is
Yt—ﬁxt)z

H27T

The log-likelihood function is

T T 1 -
NB,0%) = — log2m — = log(0?) — 552 > (e — Bxe)?
t=1

(14)
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A Simple Example: MLE for linear Regression
Take derivative with respect to 3, we get FOC

on 1 &
% = ; Z(Yt - /BXt)Xt =0

Hence . .
A ZT: XtYt
S yexe = B3 52 = pMLE - X
D1 X
t=1 t=1 t=1Xt
Under i.i.d and normal assumptions, MLE estimator and OLS

estimator for linear regressions are the same.
For o2, we have the FOC

ON 1 <

S = 2 +ggn 2= )=
Then

e'e

Se = Z(Yt Bxe)? =7

. /
Recall the unbiased estimator for o2 is 52 = i 015



Exact MLE and Conditional MLE

» In the lecture, we considered MLE for AR(1) process:

Yt = @Qyr—1+ €t (15)

Suppose that £; ~ N(0,0?) and i.i.d.
» Likelihood function

-
L( )’IW H Velye_1 )/t’)/t 1 ¢) (16)

» For t > 2, we consider the conditional distribution of y; given
v:—1. But for y;, we can only consider the unconditional
distribution. y; ~ N(0,02/(1 — ¢?))

» The log likelihood function is

M) = 5 log(2m) — - log(0?) + 3 log(1 — )

B i B ZT: (ye — dye1)? (17)
202/(1-¢%) = 202
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Exact MLE and Conditional MLE

» Exact MLE: Optimization with respect to A(¢)

» Conditional MLE: Take y; as known. Then optimize the
following function:

;
Ng) = —T2_ ! log(27) — T2 1 log(o?) — — 3 e Oyt (ye — ¢yt 1)?
=2 (18)

» When T is large enough, the contribution of y; to likelihood
can be ignored.

» If || < 1, then exact MLE and conditional MLE has same
asymptotic distribution.

» If |¢| > 1, then conditional MLE is still consistent but exact
MLE is not.
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Cramér-Rao lower bound (Optional)

» Score function: s(6) := 8/\(9)

» Fisher Information: /(0) = E[a’é\}i(f)F
» Under certain condition, /(§) = —E[H(60)]

Theorem (Cramér-Rao Inequality)

Let Xq,---, X, be a (i.i.d) sample with pdf f(x|0) and Let
W = W(Xy,---,Xy,) be any estimator for g(0) satisfying

SEWO = [ WO ), sl
(19)
Then
(GEW X))
1(0)
In particular, if W(0) = 0, then Var(f) > [1(6)] !

Var(W) > (20)
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Exercise (Optional)

Suppose that y; = 8x; + ¢, with ¢ ~ N(0,0?) i.i.d. Now find the
Cramér-Rao lower bound for 6 = (3, 02)".
Recall from previous question:

?) = _I - I 2 — i o 2
N(B,0%) = = log2m — = log(0™) — 5 ;(yt 6x)
We have
ON
o8 02 Z ~ e W N 04 Z ,BXt
and
82/\ 1 T 5 62/\ T
) X b fr ﬁX
032 2 t; £ 9022 2(o2 2)3 Z .
Also i
N 92N\ 1
0B0(c?) ~ 80203  (02)? ;(Yt — Bxe)x¢
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Exercise (Optional)

Note that
%N 1 L
E l858(02)] - _(02)2 ;Xt(E[Yt - BXt]) =0
And
82/\ . 1 5 82/\ B T
El862‘| ?;Xn E [8(0’2)2‘| = 2(02)2
Finally,

T

2(0.2)2

1(0) = —E[H(0)] = <
The Cramér-Rao lower bound in this case is

[/(9)]—1 — <O-2(ZLT_1 Xt'2)_1 0 )

204
0 T

Remark: Note that Var(3955|X) = o2(3]_; x2)~1, OLS
estimator for 5 achieves Cramér-Rao lower bounds. But unbiased
estimator for 02, i.e. s has variance 20*/(T — 1).

% Zthl th 0 )
0
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Properties of MLE

> Consistency: plimy_, . OMLE = ¢

> Asymptotic variance: Avar(AMLE) = T[1(9)] 1.

> Asymptotic normal: VT (6 — 6) % N(0, T[I(0)]2).
Intuitively, it can be thought as

BMLE ~ N(o, [1(O]7Y) (21)
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