MGTF 411 Handout 2: Brownian Motion

Jiahui Shui

April 21, 2025

1 Definition and Properties

Definition 1. *A Brownian motion (B.M.) is a continuous stochastic process that satisfies the followings*¹:

- $B_0 = 0$
- B_t has stationary and independent increments. E.g. $B_{t_2} B_{t_1}$ is independent of $B_{t_3} B_{t_2}$ if $t_1 \le t_2 \le t_3$.
- $B_t B_s \sim N(0, t-s), \forall t > s$

From the definition, we can easily see that $B_t \sim N(0, t)$.

Example 1. Calculate $\mathbb{E}[B_s B_t]$ for t > s

Solution: We have

$$\mathbb{E}[B_s B_t] = \mathbb{E}[B_s (B_t - B_s + B_s)] = \mathbb{E}[B_s \underbrace{(B_t - B_s)}_{\text{independent of } B_s}] + \mathbb{E}[B_s^2] = s$$

1.1 Hölder Continuity

Definition 2. We say that a function f(t) is Hölder continuous with index $\alpha > 0$ at point t if there exists a constant C such that

$$|f(t) - f(s)| \le C|t - s|^{\alpha}$$

Theorem 1. Brownian motion is Hölder continuous with index $\alpha < \frac{1}{2}$

Theorem 2. Brownian motion is nowhere differentiable with probability 1.

¹Actually the construction of Brownian motion may be much more complex than you think. For example, does such a stochastic process exist? If you really want to know deeper knowledge behind this, please take MATH 280 series.

1.2 Reflection Principle

Theorem 3. Suppose that $\{B_t\}_{t>0}$ is a standard Brownian motion, then for any a > 0,

$$\mathbb{P}(\max_{0\leq s\leq t}B_s\geq a)=2\mathbb{P}(B_t\geq a)$$

Proof. Let $\tau_a := \min\{t : B_t = a\}$. Then

$$\mathbb{P}(B_t \ge a | \tau_a \le t) = \frac{1}{2}$$

On the other hand, note that

$$\mathbb{P}(B_t \ge a, \tau_a \le t) = \mathbb{P}(B_t \ge a)$$

Hence, by the first equation

$$\mathbb{P}(B_t \ge a) = \frac{1}{2} \mathbb{P}(\tau_a \le t) = \frac{1}{2} \mathbb{P}(\max_{0 \le s \le t} B_s \ge a)$$

2 Martingale

2.1 Filtration

Intuitively (and informally), a filtration $\{\mathcal{F}_t\}$ can be considered as increasing information set and no information is ever forgotten, i.e. $\mathcal{F}_s \subset \mathcal{F}_t$, $\forall t > s$.

Definition 3. Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a continuous and increasing collection of σ -algebra $\{\mathcal{F}_t : t \ge 0\}$ is called a filtration if $\mathcal{F}_s \subseteq \mathcal{F}_t$ for all t > s.

Definition 4. A filtration generated by stochastic process $\{X_t : t \ge 0\}$ is the collection:

$$\mathcal{F}_t := \sigma\left(\bigcup_{0 \le s \le t} \sigma(X_s)\right)$$

2.2 Martingale

Definition 5. $\{X_t\}_{t>0}$ is called a martingale with respect to \mathcal{F}_t if

- X_t is integrable for each t
- X_t is adapted to \mathcal{F}_t . (X_t is \mathcal{F}_t measurable for all t)
- $\mathbb{E}[X_t | \mathcal{F}_s] = X_s, \forall t \ge s$

In the context of Brownian motions, we generally define $\mathcal{F}_t = \sigma(\{B_s : s \leq t\})$. Naturally, B_t is \mathcal{F}_t -measurable. It is also easy to verify that B_t , $B_t^2 - t$ are martingales. I will present a more challenging example below:

Example 2. Prove that $X_t = \exp\left(\lambda B_t - \frac{\lambda^2}{2}t\right)$ is a martingale.

Solution: Recall the moment generation function of normal distribution: suppose that $X \sim N(\mu, \sigma^2)$, then

$$\mathbb{E}[e^{tX}] = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

Now for $t \ge s$,

$$\mathbb{E}[X_t | \mathcal{F}_s] = e^{-\frac{\lambda^2}{2}t} \mathbb{E}\left[e^{\lambda(B_t - B_s)} e^{\lambda B_s} | \mathcal{F}_s\right]$$
$$= e^{-\frac{\lambda^2}{2}t} e^{\lambda B_s} \mathbb{E}\left[e^{\lambda(B_t - B_s)} | \mathcal{F}_s\right]$$
$$= e^{-\frac{\lambda^2}{2}t} e^{\lambda B_s} \mathbb{E}\left[e^{\lambda(B_t - B_s)}\right]$$
$$= e^{-\frac{\lambda^2}{2}t} e^{\lambda B_s} e^{\frac{\lambda^2}{2}(t - s)}$$
$$= e^{\lambda B_s - \frac{\lambda^2}{2}s} = X_s$$

3	Quadratic	Variation
---	-----------	-----------

Consider a partition of [0, T]:

$$0 = t_0 < t_1 < t_2 < \dots < t_{n-1} < t_n = T$$

Also denote $\Delta t := t_{i+1} - t_i = \frac{T}{n}$. We define the quadratic variation of $\{X_t\}_{t \in [0,T]}$ as

$$[X_t, X_t] := m.s. \lim_{n \to \infty} \sum_{i=0}^{n-1} (X_{t_{i+1}} - X_{t_i})^2$$
(1)

Here the notation *m.s.* $\lim_{n\to\infty}$ means "mean-square" convergence, i.e. L^2 -convergence. **Example 3.** *Prove that* $[B_t, B_t] = T$

Solution: Note that

$$\mathbb{E}\left[\sum_{i=0}^{n-1} (B_{t_{i+1}} - B_{t_i})^2\right] = \sum_{i=0}^{n-1} \Delta t = T$$

And

$$\operatorname{Var}\left[\sum_{i=0}^{n-1} (B_{t_{i+1}} - B_{t_i})^2\right] = \sum_{i=0}^{n-1} \underbrace{\operatorname{Var}((B_{t_{i+1}} - B_{t_i})^2)}_{\operatorname{Use}\chi^2} = \sum_{i=0}^{n-1} 2(\Delta t)^2 = \frac{2T}{n} \xrightarrow[n \to \infty]{} 0$$

Hence

$$\sum_{i=0}^{n-1} (B_{t_{i+1}} - B_{t_i})^2 \xrightarrow[n \to \infty]{L^2} T$$

What about the first order variation? Note that if $X \sim N(\mu, \sigma^2)$, then $\mathbb{E}[|X|] = \sigma \sqrt{2/\pi}$. Then

$$\mathbb{E}\left[\sum_{i=0}^{n-1}|B_{t_{i+1}} - B_{t_i}|\right] = \sum_{i=0}^{n-1}\mathbb{E}|B_{t_{i+1}} - B_{t_i}|] = \sum_{i=0}^{n-1}\sqrt{\Delta t}\sqrt{\frac{2}{\pi}} = \sqrt{\frac{2}{\pi}}\sqrt{nT} \to \infty$$

Hence the first order variation of Brownian motion is unbounded.

What about a deterministic function of *t*? Consider $f(t) \in C^1$, then

$$[f(t), f(t)]_{[0,T]} = \lim_{n \to \infty} \sum_{i=0}^{n-1} (f(t_{i+1}) - f(t_i))^2 = \lim_{n \to \infty} \sum_{i=0}^{n-1} [f'(\xi_i)\Delta t]^2 = \lim_{n \to \infty} \frac{T}{n} \int_0^T [f'(t)]^2 dt = 0$$

You might have seen the notations before: $(dB_t)^2 = dB_t dB_t = dt$, $dt dB_t = 0$, dt dt = 0. These notation basically mean the quadratic variation of B_t over [0, T] is T, and it is equivalent to integrating dt over [0, T].

4 Integrating BM over Time

Now we consider the following stochastic process:

$$Z_t = \int_0^t B_s \mathrm{d}s$$

The goal of this section is to derive the distribution of Z_t using definition of integral. Consider the Riemann sum:

$$Z_t^{(n)} := \sum_{i=1}^n B_{t_i} \Delta t$$

= $(B_{t_1} + (B_{t_2} - B_{t_1} + B_{t_1}) + (B_{t_3} - B_{t_2} + B_{t_2} - B_{t_1} + B_{t_1}) + \dots) \Delta t$
= $(nB_{t_1} + (n-1)(B_{t_2} - B_{t_1}) + \dots + 2(B_{t_{n-1}} - B_{t_{n-2}}) + (B_{t_n} - B_{t_{n-1}})) \Delta t$
 $\sim N\left(0, (\Delta t)^2 \sum_{i=1}^n i^2 (\Delta t)\right) = N\left(0, \frac{n(n+1)(2n+1)}{6} \frac{t^3}{n^3}\right) \xrightarrow{d} N\left(0, \frac{t^3}{3}\right)$

Note that $Z_t^{(n)} \xrightarrow{d} Z_t$, hence $Z_t \sim N(0, t^3/3)$.