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1 Stochastic Integration

1.1 Definition

Consider a partition of [0, T]: 0 = t0 < t1 < · · · < tN = T. Recall the definition of
Riemann integral for f (t):

∫ T

0
f (t)dt := lim

N→∞

N−1

∑
i=0

f (ξi)∆t, ξi ∈ [ti, ti+1]

In the definition, ξi can be any point within [ti, ti+1]. But for Itô integral with respect to
Brownian motion, we consider the left endpoint of each interval:

∫ T

0
f (t)dBt = m.s. lim

N→∞

N−1

∑
i=0

f (ti, Bti)(Bti+1 − Bti) (1)

Example 1. Use definition, calculate ∫ T

0
BtdBt

Solution: By definition, we have

∫ T

0
BtdBt = lim

N→∞

N−1

∑
i=0

Bti(Bti+1 − Bti)

= lim
N→∞

N−1

∑
i=0

(Bti − Bti+1 + Bti+1)(Bti+1 − Bti)

= lim
N→∞

N−1

∑
i=0

Bti+1(Bti+1 − Bti)− lim
N→∞

N−1

∑
i=0

(Bti+1 − Bti)
2

= lim
N→∞

N−1

∑
i=0

B2
ti+1

− lim
N→∞

N−1

∑
i=0

Bti+1 Bti − T
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The last equality is due to the quadratic variation of Bt on [0, T] is T. On the other hand,
from the first equality, we have∫ T

0
BtdBt = lim

N→∞

N−1

∑
i=0

Bti Bti+1 − lim
N→∞

N−1

∑
i=0

B2
ti

Therefore,

2
∫ T

0
BtdBt = B2

T − B2
0 − T ⇒

∫ T

0
BtdBt =

1
2

B2
T − 1

2
T

We can also represent above equation in "differential" form:

d(B2
t ) = 2BtdBt + dt

Whenever you see a differential form, you should interpret it as integrals:∫ T

0
d(B2

t ) = 2
∫ T

0
BtdBt +

∫ T

0
dt

Similarly, one can define stochastic integral w.r.t Xt as∫ T

0
f (t, Bt)dXt = lim

N→∞

N−1

∑
i=0

f (ti, Bti)(Xti+1 − Xti)

1.2 Deterministic Function

We first investigate the properties of following integral:

ZT :=
∫ T

0
f (t)dBt

where f (t) is deterministic and f ∈ L2([0, T]). We have

Theorem 1. Zt is normally distributed. ZT ∼ N(0,
∫ T

0 f 2(t)dt)

Proof. Note that

ZT := lim
N→∞

N−1

∑
i=0

f (ti)(Bti+1 − Bti)

Bti+1 − Bti are i.i.d normally distributed. Hence the sum is also normally distributed. To
formally see this, one can try moment generating functions for Xti := f (ti)(Bti+1 − Bti),
then

MXti
(u) = E[euXti ] = e

1
2 u2 f 2(ti)∆t

Therefore,

MZ(u) = lim
N→∞

N−1

∏
i=0

MXti
(u) = lim

N→∞
exp

{
1
2

u2
N−1

∑
i=0

f 2(ti)∆t

}
= e

1
2 u2 ∫ T

0 f 2(t)dt

Therefore,

ZT ∼ N
(

0,
∫ T

0
f 2(t)dt

)
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1.3 Properties of Stochastic Integral

Proposition 1. 1. (Additivity) For f (t, Bt) and g(t, Bt),∫ T

0
[ f (t, Bt) + g(t, Bt)]dBt =

∫ T

0
f (t, Bt)dBt +

∫ T

0
g(t, Bt)dBt

2. (Homogeneity) For a constant c∫ T

0
c f (t, Bt)dBt = c

∫ T

0
f (t, Bt)dBt

3. (Partition) ∫ T

0
f (t, Bt)dBt =

∫ S

0
f (t, Bt)dBt +

∫ T

S
f (t, Bt)dBt

4. (Zero Mean) We have

E

[∫ T

0
f (t, Bt)dBt

]
= 0

The propositions above are standard and easy to verify. We will introduce more
important properties as following:

Proposition 2. (Itô Isometry)

E

[(∫ T

0
f (t, Bt)dBt

)2
]
=
∫ T

0
E[ f 2(t, Bt)]dt

Proof.

E

[(∫ T

0
f (t, Bt)dBt

)2
]
= E

 lim
N→∞

(
N−1

∑
i=0

f (ti, Bti)(Bti+1 − Bti)

)2


= lim
N→∞

E[ f 2(ti, Bti)](ti+t − ti) + 2 ∑
i<j

E[ f (ti, Bti) f (tj, Btj)(Bti+1 − Bti)]E[Btj+1 − Btj ]

=
∫ T

0
E[ f 2(t, Bt)]dt

Proposition 3. (Covariance)

E

[(∫ T

0
f (t, Bt)dBt

)(∫ T

0
g(t, Bt)dBt

)]
=
∫ T

0
E[ f (t, Bt)g(t, Bt)]dt
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2 Differentiation & Itô’s Lemma

We denote dXt = Xt+dt − Xt. And this the differential form should be understood as
stochastic integrals. Some basic rules of differentiation:

1. d(cXt) = cdXt, for any constant c

2. d(Xt + Yt) = dXt + dYt

3. Product Rule: d(XtYt) = XtdYt + YtdXt + (dXt)(dYt)

4. dtdt = 0,dtdBt = dBtdt = 0, dBtdBt = dt

Theorem 2. Suppose that
dXt = µ(t, Xt)dt + σ(t, Xt)dBt

Then for a twice differentiable function f (t, Xt), we have

d f (t, Xt) =
∂ f
∂t

dt +
∂ f
∂x

dXt +
1
2

∂2 f
∂x2 (dXt)

2

=

(
∂ f
∂t

+ µ(t, Xt)
∂ f
∂x

+
1
2

σ2(t, Xt)
∂2 f
∂x2

)
dt + σ(t, Xt)

∂ f
∂x

dBt

3 Some Techniques

3.1 Fundamental Theorem of Stochastic Calculus

Consider dXt = f (t, Bt)dBt, then we must have

Xt − Xs =
∫ t

s
f (u, Bu)dBu

An alternative definition to this is

dXt = d
(∫ t

s
f (u, Bu)dBu

)
Example 2. Verify that ∫ t

0
BsdBt =

1
2

B2
t −

1
2

t

Solution: We only need to verify that

BtdBt =
1
2

d(B2
t − t)

which is easily obtained from Itô’s lemma.
Similarly, please verify that∫ t

0
sBsdBt =

t
2
(B2

t − t)− 1
2

∫ t

0
B2

s ds
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3.2 Integration by parts

Suppose f (t) is a deterministic function of t and g(Bt) is a function of Bt. Then

∫ b

a
f (t)g′(Bt)dBt = f (t)g(Bt)

∣∣∣∣b
a
−
∫ b

a

[
f ′(t)g(Bt) +

1
2

f (t)g′′(Bt)

]
dt

Here is an example:

∫ t

0
sdBs = sBt

∣∣∣∣s
0
−
∫ t

0
Bsds = tBt −

∫ t

0
Bsds

In previous handout, we have already shown that
∫ t

0 Bsds ∼ N(0, t3

3 ).

4 Stochastic Differential Equations

We actually have seen SDE before:

dXt = µ(t, Xt)dt + σ(t, Xt)dBt

It can also be interpreted as

Xt − X0 =
∫ t

0
µ(s, Xs)ds +

∫ t

0
σ(s, Xs)dBs

Example 3. Suppose that

Xt = a(1 − t) + bt + (1 − t)
∫ t

0

1
1 − s

dBs

Then Itô’s lemma tells us
dXt =

b − Xt

1 − t
dt + dBt, X0 = a

Then a natural question is: Can we inverse the step above? i.e. Obtaining Xt from its
SDE. In some cases, we do not need or we can not solve the SDE. In this section we will
introduce some solvable cases.

4.1 Expectation

If we only want to know that expectation of the process, then most of time we do not
need to fully solve the SDE. Instead, we only have to solve a ODE for the expectation,
which is much simpler than solving SDE directly. That is

E[Xt] = X0 +
∫ t

0
E[µ(s, Xs)]ds
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Also, we can do the inverse to find the expectation. Consider the following example:
Calculate E[BteBt ]. Note that

d(BteBt) =
1
2
(Bt + 2)eBtdt +

1
2
(Bt + 1)eBtdBt

Then

E[BteBt ] =
1
2

∫ t

0
E[(Bs + 2)eBs ]ds

=
1
2

∫ t

0
E[BseBs ]ds +

∫ t

0
E[eBs ]ds

=
1
2

∫ t

0
E[BseBs ]ds + 2(e

t
2 − 1)

Let φ(t) = E[BteBt ], then

φ′(t) =
1
2

φ(t) + e
t
2 , φ(0) = 0 ⇒ φ(t) = te

t
2

4.2 Exact Stochastic Equations

Recall that for f (t, Bt),

d f =

(
∂ f
∂t

+
1
2

∂2 f
∂x2

)
dt +

∂ f
∂x

dBt

Suppose that there exists a function f (t, Bt) such that
∂ f
∂t

+
1
2

∂2 f
∂x2 = µ(t, x)

∂ f
∂x

= σ(t, x)

Then
dXt = µ(t, Xt)dt + σ(t, Xt)dBt

is called an exact equation. The solution is then given by Xt = f (t, Bt) + c. The condition
for the equation to be exact is

∂σ

∂t
+

1
2

∂2σ

∂x2 =
∂µ

∂x

4.3 Linear Stochastic Differential Equation

Consider the following SDE:

dXt = (α(t)Xt + β(t))dt + σ(t, Bt)dBt

One can mimic the integrating factor approach for ODE to obtain the solution:

Xt = X0eAt +
∫ t

0
eA(t)−A(s)β(s)ds +

∫ t

0
eA(t)−A(s)σ(s, Bs)dBs
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