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Abstract

This paper studies optimal portfolio choice under the loss aversion utility proposed

in Tversky and Kahneman (1992). The loss aversion utility imposes lower penalty for

large losses than the risk aversion utility functions. As a result, it tends to generate

large risky positions and sometimes unbounded optimal portfolios, especially when asset

returns are highly skewed (either positive or negative). Loss averse investors may hold

assets with a zero risk premium and hold a positive amount of assets with a negative risk

premium. Loss aversion can affect the optimal portfolio only when the reference point

is sufficiently high, a case that is less studied in the literature, and the loss aversion

utility becomes the standard HARA utility when the reference point is low.
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1 Introduction

Prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) is one of the

most influential descriptive theories of decision-making under uncertainty. It has been widely

used to explain different investor behaviors and financial market anomalies.1 At the core of

this theory is a utility function that features loss aversion, an observation that people are

more sensitive to losses than to equivalent gains. This utility function is defined over gains

and losses relative to a reference point, and it is concave for gains and convex for losses with

an S shape (“diminishing sensitivity”). These features lead to several difficulties in applying

prospect theory. First, the reference point is difficult to be identified (e.g., Barberis, 2013).

In the literature, different referent points are used to explain different behaviors, and there

is a lack of systematic understanding of their effects. Second, maximization problems under

loss aversion may not be well formulated due to the nonconcavity of the utility function.

The literature usually imposes certain constraints or utility variations to ensure bounded

solutions. However, the optimal choice under the original loss aversion utility function of

Tversky and Kahneman (1992) is largely overlooked.

In this paper, we take the loss aversion utility of Tversky and Kahneman (1992) at face

value without any modification and study its implications for optimal choice. However, we

acknowledge that in real world people face various frictions, and the constraints as imposed

in the literature are important for practical interest. We study a standard static portfolio

choice problem in complete markets, and solve for the optimal portfolios using the Cox and

Huang’s (1989) approach. We provide a comprehensive analysis of the effects of the reference

point and the conditions under which loss aversion leads to bounded optimal portfolios. The

starkly different implications of different reference points provide a systematic understanding

1Benartzi and Thaler (1995) find that loss aversion helps explain the equity premium puzzle due to the

reluctance of agents to invest in stocks. Barberis, Huang and Santos (2001) show that loss aversion produces

excess return volatility and low correlation between stock returns and consumption growth. Gomes (2005)

uses loss aversion to explain the disposition effect and low equity market participation rates. Grinblatt and

Han (2005) find that prospect theory helps understand the momentum effect as investors tend to hold on to

their losing stocks. Barberis and Xiong (2009) find that loss aversion preferences can predict a disposition

effect when the preferences are defined over realized gains and losses rather than over paper gains and losses.

Li and Yang (2013) find that diminishing sensitivity predicts a disposition effect, price momentum, a reduced

return volatility, and a positive return-volume correlation; loss aversion predicts the opposite.
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of the loss aversion utility and the reference point and theoretical guidance for choosing and

testing the reference point.

The first set of analyses in this paper is to analytically derive the existence conditions of

the optimal portfolios under loss aversion. We show that there is no bounded optimal solution

for half of the parameter space in which loss aversion is low. With insufficient penalty for

large losses, an investor can achieve arbitrarily large expected utility by increasing terminal

wealth in one state and at the same time decreasing in another under the budget constraint,

leading to unbounded utility. However, there always exist (bounded) optimal solutions for

the other half of the parameter space with sufficiently high loss aversion, even though the

investor can be risk seeking. Under budget preserving, large gain in one state must be

associated with large losses in other states. High loss aversion ensures that the utility loss in

the latter states surpasses the utility gain in the former state, preventing the expected utility

from approaching infinity.

The above results show that the nonexistence of optimal solution is essentially due to

insufficient loss penalty of the loss aversion utility. In fact, with diminishing sensitivity, the

loss aversion utility function imposes much lower penalty for losses than do risk aversion

utility functions. For example, with the same reference point, the hyperbolic absolute risk

aversion (HARA) utility as studied in Merton (1971) is identical to the loss aversion utility

when wealth is higher than the reference point (gains) but has negative infinite (rather than

finite) utility for losses. A loss averse investor is actually less averse to losses and hence trades

more aggressively than the corresponding risk averse investor.

Furthermore, we show that the minimum value of the loss aversion coefficient above which

optimal solutions exist increases without bound as asset returns are more skewed (either

positive or negative) or as the number of states increases. A highly skewed asset allows the

investor to achieve a high utility gain at certain states (by either longing or shorting the

asset), and large numbers of states under complete markets provide the investor with more

potential opportunities. As a result, in both cases, a high loss aversion is required to ensure

finite expected utility. We find that the optimal portfolio choice problem under incomplete

markets are more likely to have bounded solutions than under complete markets, since the

former allow less investment opportunities. Our results show that a loss aversion parameter

greater than one (investors are more sensitive to losses than to gains), as usually assumed in

3



the literature, is a necessary but not a sufficient condition for existence of solutions.

Next, we examine the effects of the reference point on the optimal portfolios. We find

that when the optimal solutions exist, their properties depend crucially on the ratio of the

reference point to the investor’s initial wealth level. Hereafter, we simply call this ratio the

reference point since we can normalize initial wealth to one when we study a single-period

model. First, when the reference point is lower than the gross return of the riskless asset

(“the gross riskless rate”), the optimal terminal wealth is greater than the reference point

in all states. In fact, within the risk-averse region, the expected utility has a unique local

maximum, which is also the global maximum. More importantly, we show that a loss averse

investor with such a reference point behaves identically to a standard HARA (risk averse)

investor, since the two utility functions are the same over the gain domain. In this case, she

always longs/shorts a risky asset with a positive/negative risk premium, and the expected

utility is always positive. Furthermore, the optimal portfolio problem under loss aversion can

be transformed into a problem with a reference point of zero by redefining the initial wealth.

Then the above results read that the optimal portfolio under loss aversion is identical to

that in a standard portfolio problem under the CRRA utility with positive (redefined) initial

wealth. These results hold true, regardless of the completeness of the markets.

Reference points lower than the gross riskless rate are commonly studied in the literature.

For example, Tversky and Kahneman (1992) suggest that one candidate for the reference

point is the initial wealth level. In this case, the ratio of the reference point to initial wealth

is one, which is lower than the gross riskless rate. This reference point is used in, e.g.,

Benartzi and Thaler (1995) who study static portfolio choice under loss aversion and use loss

aversion to explain the equity premium puzzle. Our results suggest that the investors studied

in Benartzi and Thaler (1995) are similar to a standard HARA investor.

Second, we study the case when the reference point equals the gross riskless rate, which

is another popular value of reference point used in the asset pricing literature. Unlike this

literature where the loss aversion utility is usually studied under certain portfolio/utility

constraints, we focus on the implications of the loss aversion utility without any constraints

or changes to the functional form. We show that the investor takes infinite positions in

the risky asset, if the asset return is highly skewed or if the investor has low loss aversion.

Otherwise, the investor does not invest in the risky asset, since under loss aversion preferences,
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first-order risk aversion (Segal and Spivak, 1990) applies at the reference point, causing the

investor to be reluctant to take on small risks when her wealth is at the reference point.

In the above two cases when the reference point is lower than or equal to the gross riskless

rate, the optimal portfolio (if exists) is not affected by the coefficients of loss aversion and

curvatural sensitivity.

Finally, we look at the case when the reference point is higher than the gross riskless rate.

This case is where loss aversion truly has effects and somehow less studied in the literature.

We find that the optimal portfolios in this case starkly differ from those under the risk

aversion utility functions, and they exhibit significantly different properties under complete

markets and under incomplete markets. When the markets are complete, the optimal wealth

is lower than the reference point in the worst state, against which it is most expensive to

protect, but higher in all the other states. Intuitively, it is not optimal to set wealth below

the reference point in more than two states because the investor would exhibit risk seeking

in the loss domain. As a result, the investor’s wealth tends to be negatively skewed when

she leaves all utility losses in a single state.2 The “pain” in this single state dominates the

“pleasure” in all other states, and as a consequence the value function is always negative.

However, when the markets are incomplete, the investor divides all states into two groups,

one with positive excess returns and the other with negative excess returns, and she assigns

positive wealth in all states in one group and negative wealth in all states in the other group.

We further show that in this case when the reference point is higher than the gross

riskless rate, the investor is forced to take large risky positions, either leverage or shorting

the risky asset. As the reference point increases, the investor tends to assign more extremely

positive and negative wealth levels across states, resulting in more dispersed distribution of

optimal wealth. Moreover, the sign of the optimal portfolio weight is not determined by

the risk premium but by the relative levels of pricing kernel across states, which determine

the tradeoff between losses in one state and gains in another. As a result, the investor may

hold assets with a zero risk premium and can long (short) an asset with an arbitrarily low

2The negative skewness of wealth may be helpful for understanding insurance policy. Azevedo and Gottlieb

(2012) show that a risk-neutral firm can extract arbitrarily high expected values from consumers with prospect

theory preferences since such consumers accept gambles with arbitrarily large negative expected values. As

a result, there is no solution to the firm’s problem. If the consumers are subject to wealth constraints, the

firm can extract all the consumers’ wealth with probability approaching one.
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(high) risk premium. These results are in sharp contrast with those under the risk aversion

(concave) utility functions.

When the reference point is higher than the gross riskless rate, the expected utility func-

tion is nonconcave. This leads to multiple local maximums for the expected utility function,

each for one partition of states, and the greatest of them are the global maximums. This

further indicates a discontinuity in the parameter space. A small parameter change can cause

a big jump in the optimal portfolio and the value function. This poses great challenges to

the numerical solution methods as usually used in this literature. In addition, there can be

multiple global maximums at the same time; thus, the investor can achieve the same highest

expected utility by either longing or shorting the risky asset.

When the reference point is lower than or equal to the gross riskless rate, the optimal

portfolio exhibits very similar properties under complete markets and incomplete markets.

Although incomplete markets reduce potential investment opportunities, the investor can

assign her wealth at least as the gross riskless rate, which is higher than the reference point,

by holding the riskless asset. As a result, the optimal wealth will not drop in the loss domain

in any state, regardless of the completeness of the markets. However, the optimal portfolio

can be very different under the two types of markets if the reference point is higher than the

gross riskless rate. Incomplete markets allow less opportunities, and as a consequence the

investor may not be able to allocate her wealth to be lower than the reference point only in a

single (the most expensive) state. In the loss aversion literature, both complete markets (e.g.,

Berkelaar, Kouwenberg and Post, 2004; Barberis and Xiong, 2009) and incomplete markets

(e.g., Benartzi and Thaler, 1995; He and Zhou, 2011) have been widely studied.

Diminishing sensitivity, loss aversion, and reference dependence are three major psycho-

logical concepts captured by the loss aversion utility. Diminishing sensitivity in the loss

domain (or the risk seeking behavior) actually leads to lower penalty for large losses than

that imposed by the risk aversion (concave) utility functions. As a result, relative to the cor-

responding risk averse investor, a loss averse investor tends to hold more lottery-like assets

with positively skewed returns. This result complements the literature that finds that due to

the probability weighting that overweighs the tails of outcome distribution, prospect theory

investors desire positive skewness (e.g., Barberis and Huang, 2008). This low loss penalty

also leads to other key differences from the risk aversion utility functions regarding portfolio
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implications, such as unbounded optimal portfolios, large risky positions, and insensitivity

of portfolio to risk premium.

However, loss aversion does not drive the above key differences from the risk aversion

utility functions. In fact, most (if not all) risk aversion utility functions, or even risk neutral

utility, imply greater utility losses within the loss domain than the loss aversion utility func-

tion. The loss aversion coefficient has even no impact on the optimal portfolio and wealth

when the reference point is lower than or equal to the gross riskless rate.3 Regarding refer-

ence dependence, we have shown that the relative level of the reference point and the gross

riskless rate qualitatively determines the properties of the optimal portfolios (if exist). While

loss aversion affects large-scale properties of the optimal portfolio, such as boundedness of

the optimal portfolio, reference dependence determines local properties.

The above results are for the case without constraints (apart from the budget constraint).

When imposing a positive wealth constraint, which is sometimes assumed in the literature,

the optimal solutions always exist; however, they are often given by corner solutions (extreme

solutions). In this case, the constraint is the key determinant of the optimal portfolio. We

find that the optimal wealth can be lower than the reference point in more than one states,

distinctly different from that in the unconstraint case. Furthermore, wealth constraint can

still have effects in the case when the unconstrained choice has bounded optimal solutions.

Imposing constraints can even qualitatively change the optimal strategy. Notably, imposing

wealth constraint redefines the utility function: it sets the utility to be minus infinity for

wealth level beyond the constraint.

The reference point plays an important role in the loss aversion utility. However, the choice

of the reference point is a key challenge in the application of prospect theory as pointed out by

Barberis (2013), and the results on it are mixed in the literature.4 As noted by Baillon et al.

3The loss aversion coefficient can impact the optimal portfolios only when the reference point is higher

than the gross riskless rate. In this case, high loss aversion lowers both the optimal holdings of stocks and

the deviation of the optimal wealth from the reference point, due to the aversion to big losses.
4Kahneman and Tversky (1979) suggest that the reference point is current wealth or expectation levels.

Tversky and Kahneman (1991) argue that the reference point can be affected by aspirations, expectations,

norms, and social comparisons. Köszegi and Rabin (2006) postulate that the reference point is the rational

expectations about future outcomes. In the context of portfolio choice, one reference point is the price at

which the stock was initially purchased, e.g., the dispersion effect (Shefrin and Statman, 1985). Gneezy

(2005) find that participants are most likely to use the historical stock price peak as the reference point.
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(2020), “This lack of clarity [of the reference point] is undesirable, because it creates extra

freedom in deriving predictions, making it impossible to rigorously test reference-dependent

theories empirically.” Our analytical results provide a comprehensive understanding of its

effects in the context of portfolio choice. We demonstrate that the coefficients of loss aver-

sion and risk seeking can impact the properties of the optimal portfolios (if exist) only if

the reference point is higher than the gross riskless rate, providing theoretical guidance for

choosing and testing the reference point.

To focus on loss aversion, our paper studies a static model. Our analysis is general: given

a reference point, we analytically solve for the optimal portfolio. In a dynamic setting, the

reference point can be time-varying, and its effects can be more complex. The literature stud-

ies both exogenous and endogenous reference points and usually under portfolio constraints.

Berkelaar, Kouwenberg and Post (2004) consider an exogenous (time-varying) reference point

and solve for the dynamic optimal portfolios under positive wealth constraint.5 Barberis and

Xiong (2009, 2012) and Ingersoll and Jin (2013) study realization utility where an investor

receives a utility burst from realized gains/losss by setting the purchase price of risky assets

as the reference point. They show that realization utility explains the disposition effect. Dai,

Qin and Wang (2024) add to the realization utility literature by relaxing the key and common

assumption of binary stock holdings. Meng and Weng (2018) further show that the key driv-

ing force behind the explanation of the disposition effect using prospect theory is the level

of the reference point, regardless of whether the reference point is updated or not, and that

any reference point that is sufficiently higher than initial wealth can lead to the disposition

effect. Another natural reference point is consumption. For example, Dybvig and Rogers

(2013) study preferences with endogenous references that generalize the recursive utility and

are axiomatically motivated. Choi, Jeon and Koo (2022) study consumption irreversibility

where the previous consumption level is the reference point.

Baucells, Weber and Welfens (2011) show that the reference point of subjects is most heavily influenced by

the purchase and the current stock prices. Baillon, Bleichrodt and Spinu (2020) find that the most common

reference points are the status quo and a security-based level representing the maximum outcome that one

can reach for sure.
5An exogenous reference point is similar to a constant reference point in a static setting. Furthermore,

the loss averse investor with an exogenous reference point will behave like a risk averse investor when the

investment horizon is long, since the utility at low wealth levels is not important when the investor adheres

to the expanding market, as predicted by portfolio turnpike theorems (e.g., Dybvig, Rogers and Back, 1999).
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The loss aversion utility function is not concave. This leads the maximization problem to

be rather delicate. To ensure that the optimal portfolios are bounded under loss aversion, the

literature usually either imposes certain portfolio constraints, such as short-sales constraints

(Aı̈t-Sahalia and Brandt, 2001), a nonnegativity of wealth constraint (Berkelaar et al., 2004;

Barberis and Xiong, 2009), binary stock holdings (Li and Yang, 2013), and maximum toler-

able loss (similar to a wealth constraint) (Ingersoll, 2016), or introduces different restrictions

or variations to the S-shaped utility function. For example, Gomes (2005) imposes concavity

when wealth is low. Barberis et al. (2001) consider that investors’ utility function consists of

a standard risk aversion utility component, in addition to the loss aversion utility function.

Ingersoll (2016) imposes extreme-risk avoidance. However, few papers explicitly examine

the conditions for the existence of optimal solutions. These conditions are important since

they help understand under what market conditions/restrictions loss aversion is applicable to

studying the behavior of investors and asset prices. Our paper adds to this literature by ana-

lytically deriving the solution existence conditions without either constraints or modifications

of utility function.

He and Zhou (2011) is amongst the few studies that analytically examine the existence

of optimal solutions under prospect theory. They demonstrate that a prospect theory model

with general functional forms of utility and probability weighting, which include that pro-

posed in Tversky and Kahneman (1992) and following variations, is “easily ill-posed” (in

the sense of no bounded optimal solution). Our paper has two major differences from He

and Zhou (2011). While He and Zhou (2011) study a single risky asset, our paper gener-

ally studies multiple assets. In discrete time with more than two states, complete markets

require more than two assets. In addition to the existence of solutions, He and Zhou (2011)

explicitly solve for the optimal portfolio for the case with the reference point only being the

gross riskless rate. Our results on the optimal portfolio apply to any reference point.

In addition to loss aversion, the literature also exploits other deviations from expected

utility theory, such as disappointment aversion (Gul, 1991). Disappointment aversion gener-

ally implies aversion to losses and has an endogenous reference point. While prospect theory

has no axiomatic basis, disappointment aversion is grounded in axioms. Different from loss

aversion, with which the risk aversion is first-order only at the reference point, the risk aver-

sion is first-order at every level with disappointment aversion preferences. As a result, a
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disappointment averse investor holds no equity in a non-participation region, instead of a

single point, as shown in Ang, Bekaert and Liu (2005).

The paper is organized as follows. Section 2 discusses the loss aversion preferences and

the optimization problem. Sections 3 studies portfolio choice under loss aversion in complete

markets with two states, and Section 4 studies extensions, e.g., with multiple states and in

incomplete markets. Section 5 concludes. Calculation details are included in the appendices.

2 The Setup

2.1 The Portfolio Problem

We study a standard static optimal portfolio selection problem for an investor who has loss

aversion preferences that will be specified shortly in Section 2.2. The investment opportunity

set of the investor with an initial wealth w0 contains N + 1 assets, including N risky assets

and 1 riskless asset. Denote by R and r the gross returns of the risky assets and the riskless

asset, respectively. The optimization problem for the investor is given by

max
x

E
[
U(w)

]
, (1)

subject to the budget constraint w = w0r + x′(R − r1), where x is a vector of the values

of the investor’s holdings of the risky assets, U(·) is the loss aversion utility function that

will be specified shortly in (2), and w is the investor’s terminal wealth at the end of the

period. This paper focuses on the optimization problem (1) without wealth constraints. We

also study the case with wealth constraints in Section 3.4. The loss aversion utility generally

allows any wealth levels, and accordingly, our results developed in this paper also hold for

any initial wealth w0.

2.2 Loss Aversion

The utility function in cumulative prospect theory of Tversky and Kahneman (1992) is defined

over gains and losses relative to a reference point θ:

U(w) =


1

1−γ+ (w − θ)1−γ+ if w ≥ θ;

−A 1
1−γ− (θ − w)1−γ− if w < θ,

(2)
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Figure 1: This figure illustrates the S-shaped utility function. Here, A = 2 and γ± = 0.5.

where w is the investor’s wealth, θ is the reference point, γ± ∈ [0, 1) controls the curvature,6

and A > 0 determines the degree of loss aversion. With a single period, as in Tversky and

Kahneman (1992), the reference point θ is a constant. The utility function U(w) is increasing

and is concave for w ≥ θ and convex for w ≤ θ, as illustrated in Figure 1.

Under loss aversion (2), first-order risk aversion (Segal and Spivak, 1990) (for large A) or

first-order risk seeking (for small A) applies at the reference point θ. For the other points,

second-order risk aversion (w > θ) or risk seeking (w < θ) applies. As a result, an investor

with loss aversion is reluctant to take on small risks when her wealth is close to the reference

point θ, but always accepts a gamble with a positive mean when her wealth is above θ. This

is different from Knightian uncertainty and disappointment aversion (Gul, 1991), with which

the risk aversion is first-order at every level.

When γ+ = γ−, which is estimated by Tversky and Kahneman (1992) and widely assumed

in the portfolio choice and asset pricing literature, the utility (2) becomes

U(w) =


1

1−γ (w − θ)1−γ if w ≥ θ;

−A 1
1−γ (θ − w)1−γ if w < θ.

(3)

6If γ± ≥ 1, the utility approaches minus infinity when w approaches θ from above, and hence the utility

function is not increasing.
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In this paper, we focus mainly on this case. We also study γ+ 6= γ− in Section 3.5.

Cumulative prospect theory of Tversky and Kahneman (1992) incorporates two comple-

mentary components: an S-shaped loss aversion utility function as discussed above and a

probability weighting function. In this paper, we focus mainly on the effects of the S-shaped

utility function by assuming the investor’s subjective probability measure is the same as the

physical measure. We will discuss the impacts of probability weighting in Appendix B.

2.2.1 Comparison with HARA Utility

Merton (1971) studies the optimal portfolio and consumption choice problem under utility

functions in the hyperbolic absolute risk aversion (HARA) family. The HARA family is given

by U(w) = γ
1−γ (βw

γ
+ η)1−γ. When 0 < γ < 1 as in the loss aversion utility function, the

HARA utility can be written as

U(w) =


A

1−γ (w − θ)1−γ, for w ≥ θ;

−∞, for w < θ,

(4)

where A = β1−γγγ > 0 and θ = −γη
β

, to ensure uniform concavity.

Equation (4) shows that with a “reference point” θ, the HARA (risk aversion) utility has

a positive and finite utility gain in the “gain domain” (i.e., w > θ) and a utility loss of minus

infinity in the “loss domain” (i.e., w < θ). Therefore, a HARA investor is more sensitive

to losses than to equivalent gains, suggesting that like the loss aversion utility, the HARA

utility (4) also features loss aversion.

Furthermore, by letting β = γ
γ
γ−1 , the HARA utility (4) is identical to the loss aversion

utility (3) for w ≥ θ. However, the two utility functions are different when wealth lower than

the reference point w < θ. When w < θ, the loss aversion utility function (3) leads to a low

but finite utility, and the HARA utility function (4) leads to a minus infinity utility. As a

result, a loss averse investor is less averse to losses and hence tends to trade more aggressively

than the corresponding HARA investor.7

7The HARA utility function becomes the exponential utility function in the limiting case γ = −∞ and

η = 1. Due to diminishing sensitivity, the loss aversion utility function also has lighter penalty for large losses

than the exponential utility function. However, the exponential utility has no reference point and may not

be directly comparable with the loss aversion utility.
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The identical utility of the two utility functions in the gain domain further leads to the

following results on the optimal portfolio.

Proposition 1. Assume that the markets are complete and that the portfolio problem under

loss aversion has bounded solutions (conditions given by Proposition 2).

When the reference point is lower than or equal to initial wealth multiplied by the gross

riskless rate θ ≤ w0r, the optimization problem (1) under the loss aversion utility (3) is

identical to that under the HARA utility (4).

Proposition 1 shows that when the reference point is sufficiently low, the optimal portfolio

under loss aversion is identical to that under the standard HARA utility as studied in Merton

(1971). In fact, the portfolio problem under the HARA utility (4) with initial wealth w0 can be

transformed into a standard problem under a CRRA utility with initial wealth ŵ0 = w0−r−1θ.

With positive initial wealth for the latter problem (i.e., ŵ0 > 0 or θ < w0r), the optimal

wealth is always in the “gain domain” (ŵ∗ > 0); here we consider zero as a reference point

for the CRRA utility. This means that the optimal wealth for the original HARA utility

problem is always higher than the reference point w∗ > θ. In this case, the loss aversion

utility is identical to the HARA utility and hence leads to the same optimal portfolio.

Low reference points are commonly studied in the literature. For example, one popular

reference point is the initial wealth level, which is suggested in Tversky and Kahneman (1992)

and used in, e.g., Benartzi and Thaler (1995). In this case, the ratio of the reference point

to initial wealth is one, which is lower than the gross riskless rate (θ ≤ w0r).

The results in Proposition 1 may remain valid under incomplete markets. For example,

we show in Section 4.1 that these results can hold true in a simple case of incomplete markets

with three states.

3 Binomial Model

To provide clear economic insights, in this section we study a binomial model under complete

markets. There are two assets: a riskless asset with a constant gross return r and a risky

asset. The gross return R of the risky asset is either u, with probability p, or d (< u), with

probability 1− p. We choose d < r < u to guarantee no arbitrage.
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In the remainder of this section, we first solve for the optimal wealth and then resolve the

optimal trading strategy by using the martingale approach (Cox and Huang, 1989). With

two assets and two states, the markets are complete. There exist unique strictly positive state

prices. The state prices for state u and d are given, respectively, by pξu and (1− p)ξd, where

the pricing kernel ξ satisfies ξu = r−d
p(u−d)r

and ξd = u−r
(1−p)(u−d)r

. As a result, the optimization

problem (1) can be rewritten in terms of state prices:

max
wu,wd

pU(wu) + (1− p)U(wd), (5)

subject to the budget constraint

pξuwu + (1− p)ξdwd = w0, (6)

where wu and wd are the investor’s portfolio wealth in states u and d, respectively.

3.1 Existence of Bounded Optimal Solutions

Using the budget constraint (6), we express wd in terms of wu: wd = w0−pξuwu
(1−p)ξd

. This allows

us to rewrite the expected utility function EU in terms of wu:

EU(wu) = pU(wu) + (1− p)U
(w0 − pξuwu

(1− p)ξd

)
. (7)

The following lemma states the asymptotic behavior of the expected utility (7).

Lemma 1. (Asymptotic behavior.) When wu → +∞, the EU satisfies

EU →


+∞, if A <

(
p

1−p

)γ( ξd
ξu

)1−γ
;

0, if A =
(

p
1−p

)γ( ξd
ξu

)1−γ
;

−∞, if A >
(

p
1−p

)γ( ξd
ξu

)1−γ
.

(8)

When wu → −∞, the EU satisfies

EU →


+∞, if A <

(
1−p
p

)γ( ξu
ξd

)1−γ
;

0, if A =
(

1−p
p

)γ( ξu
ξd

)1−γ
;

−∞, if A >
(

1−p
p

)γ( ξu
ξd

)1−γ
.

(9)
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Both (8) and (9) show that the expected utility can be unbounded from above if loss

aversion A is sufficiently low. In this case, the low loss aversion leads to insufficient penalty

for extremely negative wealth. As a result, the investor can achieve arbitrarily large expected

utility by assigning her terminal wealth to be positive infinity in one state and negative infinity

in the other under the budget constraint. This is different from standard expected utility

functions that are uniformly concave. The expected utility functions impose sufficiently heavy

penalty for strongly low level of wealth, while the utility gains in good states are relatively

smaller, preventing the EU from approaching positive infinity.

To have a well-posed problem (5), the EU should be bounded from above. Lemma 1

leads to the following conditions of the existence of optimal solutions.

Proposition 2. (Existence of solutions.) Define

A = max

{( p

1− p

)γ(ξd
ξu

)1−γ
,
(1− p

p

)γ(ξu
ξd

)1−γ
}
. (10)

1. When A > A, the optimization problem (5) has bounded solutions.

2. When A < A, the optimization problem (5) does not have bounded solutions.

3. When A = A, the optimization problem (5) has bounded solutions for θ ≤ w0r and does

not have bounded solutions for θ > w0r.

Proposition 2 shows that there is a lower bound A for the loss aversion parameter A,

below which the optimal portfolio choice problem (5) has no solution. This is essentially

because the penalty of loss is too light. Consider a budget preserving change

∆w =
( ∆

pξu
,
−∆

(1− p)ξd

)
. (11)

It says that if the investor wants to increase wealth in, e.g., state u by ∆
pξu

, she has to give up

−∆
(1−p)ξd

in state d. When A < A, the utility gain in one state (state u) is always higher than

the utility loss in the other state (state d). As a result, the investor can always increase her

expected utility without bound by assigning more wealth in the first state and at the same

time less wealth in the second state, leading to infinite expected utility.

Proposition 2 further shows that there always exist optimal solutions for A > A. With

a high level of loss aversion A, the utility gain when wealth exceeds the reference point is

lower than the utility loss when wealth is lower than the reference point by the same amount.
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This renders extreme assignment of wealth suboptimal. The above results therefore suggest

that the driver of the nonexistence of optimum is insufficient loss penalty rather than risk

seeking preferences. With sufficient penalty on losses (large loss aversion A), there always

exist global optimum even under risk seeking.

Most papers generally require that loss aversion A is great than 1 (investors are more

sensitive to losses than to equivalent gains), which is consistent with the estimate in Tversky

and Kahneman (1992). Condition (10) shows that this condition appears to be a necessary

condition for existence of solutions. It is not sufficient to guarantee interior solutions, de-

pending on the market parameters p, ξu, and ξd, as well as utility parameter γ. Figure 2

plots the lower bound A against p (the left panel) and against pricing kernel ratio ξu/ξd (the

right panel). It shows that A is low when asset return distribution is symmetric. When the

probability is close to zero (positively skewed return) or 1 (negatively skewed return),8 or the

pricing kernel ratio is close to zero, the lower bound A approaches infinity, and it is unlikely

to have bounded optimal solutions. Intuitively, an asset with highly skewed returns (either

left or right) allows the investor to achieve a high utility gain at certain states (by either

shorting or longing the asset); thus, a high loss aversion is required to ensure finite expected

utility.

3.2 Optimal Wealth

We have derived the conditions under which the optimal solutions exist. Now we study the

optimal portfolio under these conditions. We first study the case A > A and then describe

the extreme case A = A at the end of Section 3.3. The following proposition describes the

results of the optimal wealth.

Proposition 3. (Optimal wealth and value function.) Suppose A > A.

1. When θ < w0r, the optimal wealth in the two states is given by

w∗u − θ =
(
w0 − r−1θ

)[
pξ

1− 1
γ

u + (1− p)ξ
1− 1

γ

d

]−1

ξ
− 1
γ

u > 0,

w∗d − θ =
(
w0 − r−1θ

)[
pξ

1− 1
γ

u + (1− p)ξ
1− 1

γ

d

]−1

ξ
− 1
γ

d > 0,
(12)

and the value function is given by J = (w0−r−1θ)1−γ

1−γ [pξ
1− 1

γ
u + (1− p)ξ

1− 1
γ

d ]γ.

8Return skewness is p(1− p)(1− 2p)(u−dσ )3, which is positive for p < 0.5 and negative for p > 0.5.
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Figure 2: The left panel plots the lower bound A against probability p, and the right panel

plots A against the pricing kernel ratio ξu/ξd (we assume ξu ≤ ξd without loss of generality).

Here, γ = 0.5, ξu = 1 and ξd = 1.5 for the left panel and γ = 0.5 and p = 0.5 for the right

panel.

2. When θ = w0r, the optimal wealth in the two states is given by

w∗u = w∗d = θ, (13)

and the value function is given by J = 0.

3. When θ > w0r, the EU has two local maximums, and the global maximum is the greater

of them. Specifically, one local maximum occurs for wd < θ < wu, at which the portfolio

wealth is given by

w∗u − θ =
(
r−1θ − w0

)[
− pξ

1− 1
γ

u + (1− p)A
1
γ ξ

1− 1
γ

d

]−1

ξ
− 1
γ

u > 0,

θ − w∗d =
(
r−1θ − w0

)[
− pξ

1− 1
γ

u + (1− p)A
1
γ ξ

1− 1
γ

d

]−1

A
1
γ ξ
− 1
γ

d > 0,
(14)

and the EU is given by EU+ = − (r−1θ−w0)1−γ

1−γ [−pξ
1− 1

γ
u + (1− p)A

1
γ ξ

1− 1
γ

d ]γ; another local

maximum occurs for wu < θ < wd, at which the wealth is given by

θ − w∗∗u =
(
r−1θ − w0

)[
pA

1
γ ξ

1− 1
γ

u − (1− p)ξ
1− 1

γ

d

]−1

A
1
γ ξ
− 1
γ

u > 0,

w∗∗d − θ =
(
r−1θ − w0

)[
pA

1
γ ξ

1− 1
γ

u − (1− p)ξ
1− 1

γ

d

]−1

ξ
− 1
γ

d > 0,
(15)
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and the EU is given by EU− = − (r−1θ−w0)1−γ

1−γ [pA
1
γ ξ

1− 1
γ

u − (1− p)ξ
1− 1

γ

d ]γ.

Although the reference point θ does not affect the existence of solutions in Proposition

2, it significantly affects the properties of optimal portfolio (if exists). Proposition 3 shows

that the properties of the optimal solution depend crucially on the relative level of the initial

wealth w0 to the reference point discounted by the gross riskless rate r−1θ. The optimal

portfolio problem under loss aversion can be transformed into a problem with a reference

point of zero by redefining the initial wealth as ŵ0 = w0 − r−1θ (Appendix A.1). Then

Proposition 3 reads that the optimal portfolio for this transformed problem exhibits starkly

different properties when the sign of the initial wealth ŵ0 is different.

We first consider the case θ < w0r. Because the gross riskless rate is determined by the

state prices: r−1 = E[ξ], in this case we have E[ξ]θ < w0. Together with the budget constraint

E[ξw] = w0, we obtain

E[ξ(w − θ)] > 0,

which shows that the terminal wealth w must be greater than the reference point θ in at

least one of the two states u and d. Proposition 3 confirms this and further shows that it

is not optimal to have the terminal wealth higher than the reference point in one state but

lower in the other state, and the optimal wealth is greater than the reference point in both

states. In fact, in this gain domain (w > θ), the EU has a local maximum, which is also the

global maximum. Proposition 3 also shows the investor allocates more wealth in the better

state with low pricing kernel and that the expected utility is always positive.

When θ = w0r, it is optimal to assign wealth in both states to be at the reference point,

w∗u,d = θ. In this case, the expected utility is zero. Intuitively, consider a budget preserving

change (11) starting from wu = wd = θ. If wealth in one state is greater than the reference

point, the wealth in the other state must be lower than the reference point. Due to the strong

loss penalty (for A > A), the utility gain in the former state is lower than the utility loss in

the latter, leading to negative expected utility.

When θ > w0r, due to the budget constraint, the investor can either assign her terminal

wealth to be lower than the reference point at one state and at the same time greater at

the other state, or assign her terminal wealth to be lower than the reference point at both

states. Proposition 3 shows that the optimal solution occurs only in the former case: either

w∗d < θ < w∗u or w∗u < θ < w∗d. In fact, if the investor’s terminal wealth is lower than the
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reference point in both states, she is risk seeking. She can always increase EU by choosing a

more extreme wealth allocation across states, eventually pushing wealth above the reference

point in one of the two states. Proposition 3 also shows that in this case the expected utility

is always negative; thus, the value function is negative.

Proposition 3 shows that loss aversion does not impact the optimal wealth when θ < w0r

or θ = w0r. It takes effects only when θ > w0r. In the case of θ > w0r, the deviation of

wealth from the reference point |w∗− θ| decreases with the loss aversion A. Especially, when

A→∞, the optimal wealth in one state converges to the reference point (w∗u → θ in (14) or

w∗∗d → θ in (15)). In fact, when θ > w0r, the investor’s initial wealth is relatively low, and

she has to allow her wealth to be lower than the reference point in at least one state. When

A → ∞, the investor is extremely averse to losses. She wants to have as small as possible

losses in this state. In doing so, she sets her wealth in the other state at zero.

The above results show that it cannot be optimal to assign wealth to be lower than the

reference point at both states. We summarize the results on the relative levels of optimal

terminal wealth to the reference point in the following corollary.

Corollary 1. Suppose A > A.

1. When θ < w0r, the optimal wealth is greater than the reference point at both states.

2. When θ = w0r, the optimal wealth is equal to the reference point.

3. When θ > w0r, the optimal wealth is greater than the reference point at one state and

lower than the reference point at the other state.

The S-shaped utility is not concave, leading to nonconcave EU (in terms of the control

variable). To understand the effect of the nonconcavity of the utility, Figure 3 plots the EU

against wu. The left panel is for the case θ < w0r and the right panel the case θ > w0r. We

first look at the left panel of Figure 3. We divide the interval of wu into three subintervals,

(−∞, θ), [θ, ŵu], and (ŵu,+∞), where ŵu ≡ w0−(1−p)ξdθ
pξu

corresponds to the case with the

wealth in state d being at the referent point (ŵd = θ). The three intervals correspond to the

cases of wu < θ < wd, wu,d ≥ θ, and wd < θ < wu, respectively. The left panel shows that the

EU is convex and increases with wu over wu ∈ (−∞, θ], is concave and has a local maximum
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Figure 3: The figure plots the expected utility function EU against wealth wu for θ < w0r

(the left panel) and θ > w0r (the right panel). Here, A = 2, γ = 0.5, ξu = 1, ξd = 1.5,

p = 0.5, and ŵu ≡ w0−(1−p)ξdθ
pξu

is the value of wu such that ŵd = θ. We set θ/w0 = 0.5 (< r)

for the left panel and θ/w0 = 1 (> r) for the right panel.

over wu ∈ [θ, ŵu],
9 and is convex and decreases with wu over wu ∈ [ŵu,∞]. The nonconcavity

does not take effect when wealth is higher than the reference point in both states, i.e., when

wu ∈ [θ, ŵu]. These results together show that the unique local maximum over the interval

wu ∈ [θ, ŵu] is the global maximum.

The right panel illustrates the case θ > w0r. It shows that the expected utility function is

not concave and has multiple local maximums. We still discuss the results in terms of three

subintervals of wu. For wu ∈ (−∞, ŵu) or wu ∈ (θ,+∞), which corresponds to wu < θ < wd

or wd < θ < wu, respectively, the EU is concave and has a local maximum in each of the

two intervals. For wu ∈ [ŵu, θ], the wealth at both states is lower than the reference point

(wu,d ≤ θ). In this interval, the EU is convex, and there is no local maximum. Therefore,

there are two local maximums, one in (−∞, ŵu) and one in (θ,+∞), and one of them (the

first one under our parameters) is the global maximum.

Proposition 3 shows that when θ > w0r, the global maximum of the EU is the greater

9In particular, if γ = 0, the EU is linear not concave in the interval wu ∈ [θ, ŵu], and the optimum occurs

at the boundary.
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of the two local maximum. The following corollary further provides the conditions that

determine which one is the global maximum.

Corollary 2. Suppose A > A and θ > w0r.

1. When (1− p)ξ
1− 1

γ

d < pξ
1− 1

γ
u , the global maximum occurs for w∗d < θ < w∗u.

2. When (1− p)ξ
1− 1

γ

d > pξ
1− 1

γ
u , the global maximum occurs for w∗∗u < θ < w∗∗d .

3. When (1− p)ξ
1− 1

γ

d = pξ
1− 1

γ
u , there are two global maximums, one for w∗d < θ < w∗u and

one for w∗∗u < θ < w∗∗d .

When (1 − p)ξ
1− 1

γ

d < pξ
1− 1

γ
u , EU− < EU+, and thus EU+ is the global maximum.10 In

this case, Proposition 3 shows that at the global maximum w∗d < θ < w∗u. To understand this

result, we consider a case with p = 0.5 and ξu < ξd. Because a change in wd is associated

with a larger change in wu under the budget constraint 0.5ξuwu + 0.5ξdwd = w0, allocating

more wealth in state u relative to state d will yield higher utility. As a result, the optimal

wealth is lower than the reference point in the bad state d, against which it is more expensive

to protect, but higher in the good state u.

The result is the opposite for (1 − p)ξ
1− 1

γ

d > pξ
1− 1

γ
u . In this case, the global maximum

occurs for w∗u < θ < w∗d, and the value function is given by EU−. Particularly, when

(1− p)ξ
1− 1

γ

d = pξ
1− 1

γ
u , we have EU− = EU+, and both are global maximums.

The nonconcavity of the S-shaped utility causes the optimal portfolios to be sensitive to

parameters and yields jumps in the optimal portfolios. To see this, we examine the impacts

of the pricing kernel on the optimal portfolios. Figure 4 illustrates the optimal wealth w∗u

as a function of the pricing kernel ξu. When the pricing kernel is too low or too high, there

is no optimal solution as shown in Proposition 2. Within the interval in which there exist

optimal solutions, there are two thresholds, ξ1
u and ξ2

u, for ξu. The first threshold ξ1
u is such

that w0r = θ, and the second ξ2
u is such that (1−p)ξ

1− 1
γ

d = pξ
1− 1

γ
u . When ξu < ξ1

u, the optimal

wealth w∗u is given by (12) and is positive. When ξu > ξ1
u, we have θ > w0r. In this case,

if ξ1
u < ξu < ξ2

u, the optimal wealth w∗u is given by (14) and is also positive; if ξu > ξ2
u, the

optimal wealth w∗u is given by (15) and is negative. In particular, at ξu = ξ2
u, there are two

different optimal wealth w∗u, one is higher than the reference point and one is lower. When

10Note that in this case, we have 1−p
[(1−p)ξd]1−γ <

p
(pξu)1−γ

.
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Figure 4: This figure illustrates the optimal wealth w∗u against pricing kernel ξu. Here,

ξd = 0.5, γ = 0.5, A = 2, w0 = 1.2, θ = 1, and p = 0.5.

ξu > ξ2
u, the global maximum switches from EU+ to EU−, associated with a jump in the

optimal wealth around ξu = ξ2
u, which is a discontinuity in the parameter space. As a result,

a small change in a parameter can cause a big jump in the optimal portfolio and expected

utility. This poses significant challenges to numerical solution methods as usually used in the

literature.

Proposition 3 shows that the sign of the value function varies significantly across the

different cases. We summarize the sign of the value function in the following corollary. It

shows that the sign is determined by the initial wealth level. When the initial wealth level

is high θ < w0r, the value function is positive. When initial wealth is low θ > w0r, although

the optimal wealth can be positive at certain state in Figure 4, the value function is always

negative.

Corollary 3. Suppose A > A. The value function is positive for θ < w0r, negative for

θ > w0r, and equal to zero for θ = w0r.
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3.3 Optimal Portfolio Allocation

Given the optimal wealth, we can further resolve the optimal portfolio allocation.

Proposition 4. (Optimal portfolio allocation.) Suppose A > A.

1. When θ < w0r, the value of the optimal holdings of the risky asset is given by

x∗ =
(k − 1)(w0r − θ)

(u− r) + k(r − d)
, (16)

where k = [ p(u−r)
(1−p)(r−d)

]
1
γ .

2. When θ = w0r, the optimal holdings of the risky asset is given by

x∗ = 0. (17)

3. When θ > w0r, the optimal holdings of the risky asset is given by

x∗ =


x+, if p(u−r)1−γ

(1−p)(r−d)1−γ
> 1;

x−, if p(u−r)1−γ
(1−p)(r−d)1−γ

< 1;

x+ and x−, if p(u−r)1−γ
(1−p)(r−d)1−γ

= 1,

(18)

where

x+ =
(k+ + 1)(θ − w0r)

(u− r)− k+(r − d)
> 0, x− =

(k− + 1)(θ − w0r)

(u− r)− k−(r − d)
< 0,

with k+ = [ p(u−r)
A(1−p)(r−d)

]
1
γ and k− = [ Ap(u−r)

(1−p)(r−d)
]
1
γ .

When θ < w0r, (16) shows that the value of optimal holdings of stock x∗ is positive if

and only if the risk premium is positive (k > 1). This result is typically found with standard

expected utility. In this case, the optimal holdings are independent of loss aversion A.

When θ = w0r, the investor does not participate into the equity market regardless of the

level of the risk premium. In fact, for A > A, first-order risk aversion is applying at w = θ

but second-order risk aversion at all w > θ. As a result, an investor with loss aversion is

reluctant to take on small risks when her wealth is close to θ but always accepts a gamble with

a positive mean when her wealth is above θ. Proposition 4 shows that when the reference

point equals the investor’s initial wealth level scaled up by the gross riskless rate, the investor

is reluctant to invest in stocks. This is consistent with the literature that shows that loss
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aversion helps explain investors’ reluctance to participate in the equity markets. Proposition

4 also shows that when the reference point is different from this breakpoint (θ 6= w0r), the

investor will always participate into the equity market.11

When θ > w0r, we have shown that the EU has two local maximums. Proposition 4

shows that if p(u−r)1−γ
(1−p)(r−d)1−γ

> 1, that is, state u is a better state relative to d,12 the global

maximum occurs for wd < θ < wu. In this case, x+ > θ−w0r
u−r > 0: the investor assigns more

wealth in state u than in d by longing the risky asset. As a result, the optimal holdings x∗

are always positive, even if the risk premium is negative. Indeed, under the S-shaped utility,

the sign of the optimal holdings are mainly determined by the relative levels of pricing kernel

at states u and d, which determine the tradeoff between losses in one state and gains in the

other state. Because proportional scales in the expected returns at both states do not affect

the condition p(u−r)1−γ
(1−p)(r−d)1−γ

> 1, the investor can even go long an asset with an arbitrarily

low risk premium. These results are in sharp contrast with that under risk aversion utility

functions. When the investment opportunity set contains a risky asset and a riskless asset,

a risk averse investor is always long the risky asset if it has a positive risky premium.

In the case of θ > w0r, if p(u−r)1−γ
(1−p)(r−d)1−γ

< 1 (d is a better state), the global maximum

occurs for wu < θ < wd. To assign more wealth in state d, the investor must be short the

risky asset: x− < − θ−w0r
r−d < 0. As a result, the optimal holdings are always negative, even

with a positive risk premium. In the limiting case p(u−r)1−γ
(1−p)(r−d)1−γ

= 1, the two local maximums

have the same expected utility, and both xu and xd are optimal.

The following corollary summarizes the sign of the optimal holdings of stock.

Corollary 4. 1. When θ < w0r, x
∗ > 0 if and only if the risk premium is positive.

2. When θ = w0r, the optimal holdings of stock are zero x∗ = 0.

3. When θ > w0r, x
∗ > 0 if and only if p(u−r)1−γ

(1−p)(r−d)1−γ
> 1, independent of the sign of the

risk premium.

11Second-order risk aversion (seeking) applies at all wealth levels greater (lower) than the reference point,

and as a result, outside this breakpoint, the investor always participates into the equity markets. Particularly,

when the reference point is higher than the gross riskless rate as discussed below, the investor tends to even

take a large position, either long or short, in the risky asset.
12In this case, 1−p

[(1−p)ξd]1−γ <
p

(pξu)1−γ
, which corresponds to Case 1 in Corollary 2.
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Figure 5: This figure illustrates the optimal portfolio weight φ∗ ≡ x∗/w0 against u for the

case θ > w0r. Here, A = 2, γ = 0.5, d = 0.5, r = 1, w0 = 0.8, θ = 1, and p = 0.45.

Figure 5 illustrates the optimal portfolio weight φ∗ ≡ x∗/w0 as a function of u for the case

θ > w0r.
13 When p(u−r)1−γ

(1−p)(r−d)1−γ
< 1,14 that is, d is a better state, the optimal portfolio weight is

illustrated by the blue solid line. In this case, the optimal portfolio weight is always negative,

independent of the sign of risk premium. For example, the vertical dotted line illustrates the

value of u at which the risk premium is 0. The risk premium is positive when u is greater

than this value. Figure 5 shows that the optimal portfolio weight can be still negative even

when the risk premium is positive. As u decreases and approaches r+k−(r−d), the optimal

portfolio approaches negative infinity. When p(u−r)1−γ
(1−p)(r−d)1−γ

> 1, that is, u is a better state,

the optimal portfolio weight is illustrated by the red dash-dot line. In this case, the optimal

portfolio weight is always positive. As u increases and approaches r+ k+(r− d), the optimal

portfolio approaches positive infinity.

In the extreme case of p(u−r)1−γ
(1−p)(r−d)1−γ

= 1, there are two different optimal portfolio weights

13Note that there is no optimal solution for the optimal choice problem when u is too small (u < r+k+(r−

d)), or too large (u > r + k−(r − d)), as shown in Proposition 2.
14It follows that u < û ≡ r + [(1− p)/p]

1
1−γ (r − d).
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φ∗ = φ−(≡ x−/w0) and φ∗ = φ+(≡ x+/w0), with one (φ−) being negative and one (φ+)

positive. Both of them yield the same EU . This means that the investor can achieve the

highest expected utility by either buying the risky asset or short-selling it. As a result, the

optimal portfolio weight can jump from positive to negative around this extreme point u = û,

for a small change in parameters (including both market parameters and utility parameters).

We will show in Section 3.6 that with multiple states, there can be multiple local maximums

of the EU and hence multiple jumps in the optimal portfolio weight.

Due to this jump, the optimal portfolio weight is either φ∗ ≥ 0.61 or φ∗ ≤ −0.78 as

illustrated in Figure 5. the portfolio weight cannot be optimal if it is small in magnitude

(−0.78 < φ∗ < 0.61). Investors with a high reference point tend to take a large position,

either long or short, in the risky asset, always participating into the stock market.

Propositions 3–4 directly lead to the following results on comparative statics.

Corollary 5. (Comparative statics.)

1. The optimal investment in stocks x∗ and the optimal wealth depends linearly on the

reference point θ.

The magnitudes of the optimal investment in stocks |x∗|, the deviation of the optimal

wealth from the reference point |w∗−θ|, and the value function J increases with |θ−w0r|.

2. When θ < w0r or θ = w0r, the optimal stock investment x∗ is independent of A.

When θ > w0r, the optimal investment in stocks x∗, the deviation of the optimal wealth

from the reference point |w∗ − θ|, and the value function J decrease with A.

The sign of the optimal holdings of stock has been described in Corollary 4. Corollary

5 Part 1 further describes its magnitude. Recall that when the reference point is the gross

riskless rate θ = w0r, the optimal stock investment is zero. Corollary 5 shows that as

the reference point deviates from the gross riskless rate, the magnitude of stock investment

increases. Because the utility is defined over the deviation of wealth from the reference point

θ, both the optimal wealth and the optimal holdings depend linearly on θ.

The reference point θ significantly affects the wealth distribution when the reference

point is higher than the gross riskless rate θ > w0r. In this case, as θ increases, the wealth

distribution becomes more dispersed and volatile. The investor assigns extremely positive

and negative wealth levels across states.
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The second part of Corollary 5 states the effect of loss aversion A on the optimal holdings

of stock. When the reference point is low θ ≤ w0r, the optimal demand is independent of A.

When the reference point is high θ > w0r, as loss aversion A increases, the optimal holdings

of stock always decrease for both the case p(u−r)1−γ
(1−p)(r−d)1−γ

> 1 and p(u−r)1−γ
(1−p)(r−d)1−γ

≤ 1, since the

investor is averse to big losses. This further lowers the value function. Note that the results

in Corollary 5 still hold true for more than 2 states as shown shortly in Section 3.6.

The above results show that although the loss aversion significantly affects the existence

of optimal solutions (Proposition 2), it has a less significant effect on the optimal portfolios if

they exist. On the other hand, the reference point does not impact the existence of optimal

solutions but is the most important factor in driving the optimal portfolios.

In the above analyses, we focus on the case A > A. The following proposition also

describes the results for the extreme case A = A,

Proposition 5. Suppose A = A.

1. When θ < w0r, the optimal solutions are the same as those in Propositions 3–4.

2. When θ = w0r, any x ≥ 0 is optimal if ( p
1−p)γ( ξd

ξu
)1−γ ≥ 1, and any x ≤ 0 is optimal if

( p
1−p)γ( ξd

ξu
)1−γ ≤ 1. The value function always equals zero.

3. When θ > w0r, there is no optimal solution.

Proposition 5 shows that the optimal solution in the case A = A exhibits very different

properties from the case A > A. In particular, when θ = w0r, utility gain in one state

is identical to the utility loss in the other state. As a result, the expected utility always

equals zero, independent of the level of stock holdings (thus, only the sign of stock holdings

is relevant).

3.4 Positive Wealth Constraint

We have shown that with the S-shaped utility function, there exist optimal portfolios for half

of the parameter space, but there is no optimal solution for the other half of the parameter

space. The lack of solutions over a substantial fraction of the parameter space represents

a limitation of the loss aversion preferences. To have solutions, the literature sometimes
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imposes wealth constraint. In this section, we examine its effects. Without loss of generality,

we consider positive wealth constraint:15

w ≥ 0. (19)

We show that imposing constraints often leads to corner solutions.

Assume the initial wealth is positive w0 > 0.16 The wealth constraint wu ≥ 0 for state u

together with the budget constraint wd = w0−pξuwu
(1−p)ξd

leads to an upper bound of wealth in state

d: wd ≤ w0

(1−p)ξd
. Similarly, there is also an upper bound for wu due to constraint wd ≥ 0. As

a result, the wealth in the two states lies in the intervals:

wu ∈
[
0,

w0

pξu

]
, wd ∈

[
0,

w0

(1− p)ξd

]
. (20)

With positive wealth constraint, the EU always has maximums. When A < A, there

is no optimal wealth for the unconstraint case. After imposing the constraint, there exists

optimal wealth and it is given by corner solutions (extreme solutions):w
∗
u = w0

pξu

w∗d = 0

or

w
∗∗
u = 0

w∗∗d = w0

(1−p)ξd

. (21)

With a sufficiently high reference point (or low initial wealth), the optimal wealth in both

states can be lower than the reference point. This significantly differs from the case without

the wealth constraint, in which it cannot be optimal to assign wealth to be lower than the

reference point at both states.

Now we consider A > A. In this case, the unconstraint problem has optimal solutions.

Especially, if θ > w0r, the optimal wealth is negative at one of the two states. However,

imposing constraint in this state binds the wealth to be zero. These results show that wealth

constraint can still have effects even if the choice has optimal solution in the unconstraint

case. Imposing constraints can even qualitatively change the optimal strategy.

In addition, Proposition 3 implies that when w0 is sufficiently low or when the reference

point is sufficiently high: w0 < θmin{pξu[A−
1
γ (ξu/ξd)

− 1
γ + 1], (1 − p)ξd[A−

1
γ (ξd/ξu)

− 1
γ + 1]},

15Imposing other levels of bound (either lower or upper bound) of wealth can be understood from our

results by adjusting θ and w0 by noting that our analyses generally hold for any values of them and that

imposing a lower wealth bound is equivalent to certain upper wealth bound due to the budget constraint.
16Although the loss aversion preferences in Tversky and Kahneman (1992) allows negative wealth, there is

no solution for w0 ≤ 0 under the positive wealth constraint.
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the optimal solutions are always corner solutions, as one of the two bounds of wu in (20) must

be reached. When A > A and θ ≤ w0r, the optimal wealth tends to be interior solutions

(wu,d > 0).17 In this case, the wealth constraint takes no effect.

Remark 1. With wealth constraints, the optimal portfolio weights always exist but are often

given by corner solutions.

The above results highlight the stark differences in the optimal portfolios with and without

wealth constraint. It is worth noting that imposing wealth constraint is similar to changing

utility function. For example, imposing positive wealth constraint is equivalent to setting

utility as −∞ for w ∈ (−∞, 0). However, the original loss aversion utility is defined over all

wealth levels in Tversky and Kahneman (1992).

Berkelaar et al. (2004) study optimal portfolio choice under loss aversion in a continuous-

time setting. In Berkelaar et al. (2004), the markets are complete. By the Cox and Huang

approach, the dynamic problem can be rewritten as a static problem ((10) in Berkelaar et al.

(2004)), in which there are infinitely many states indexed by a Brownian motion. Problem

(10) in Berkelaar et al. (2004) imposes a positive wealth constraint.18 The problem studied

in this section can be viewed as a single-period two-state version of Berkelaar et al. (2004).

Under the positive wealth constraint, the optimal solution always exists in Berkelaar et al.

(2004). Our results further suggest that this solution is unlikely to be an internal one. In

addition, Berkelaar et al. (2004) find that the optimal wealth is either above the reference

point or equal to zero. Our results show that the wealth level depends crucially on the levels

of the reference point and loss aversion.

3.5 The case γ+ 6= γ−

The above analyses focus on the case with the same curvature parameters, γ+ = γ− ≡ γ.

This is commonly considered in most studies. In this section, we consider the case with

different γ+ and γ−, as generally allowed in Tversky and Kahneman (1992).19

17If θ < 0, the optimal solutions can be given by corner solutions.
18In a continuous-time economy where the risky assets follow geometric Brownian motions, investors’

wealth could be negative with a positive probability (Sethi and Taksar, 1988); thus, the wealth constraint is

binding.
19Tversky and Kahneman (1992) estimates the same values of them: γ+ = γ− = 0.12. Wu and Gonzalez

(1996) find γ− is higher (γ+ = 0.48, γ− = 0.63). Abdellaoui (2000) estimate a higher γ+ (γ+ = 0.11,
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When γ+ 6= γ−, the loss aversion utility (2) still features diminishing sensitivity and

reference dependence. However, whether the investor is loss averse depends on the size of

positions as shown in the following lemma.

Lemma 2. 1. When γ− < γ+, loss aversion applies when |w − θ| > ( 1−γ+
1−γ−A)

1
γ−−γ+ .

2. When γ+ < γ−, loss aversion applies when |w − θ| < ( 1−γ+
1−γ−A)

1
γ−−γ+ .

Lemma 2 shows that when γ− < γ+, the investor is loss averse only for large positions:

|w − θ| > ( 1−γ+
1−γ−A)

1
γ−−γ+ ; however, when wealth is close to the reference point, the investor

is actually more sensitive to gains than to equivalent losses, opposite to loss aversion. When

γ− < γ+, the investor is loss averse only for small positions. In contrast, in the case of

γ+ = γ− as studied above, loss aversion is completely controlled by the coefficient A, and the

investor is always loss averse when A > 1.

The following proposition discusses the existence of bounded optimal solutions for problem

(5) if γ+ 6= γ−.

Proposition 6. (Existence of bounded solutions when γ+ 6= γ−.)

1. When γ− < γ+, the optimization problem has bounded solutions.

2. When γ+ < γ−, the optimization problem does not have bounded solutions.

Although the magnitude of loss aversion A determines the existence of optimal solutions

for the case γ− = γ+, Proposition 6 shows that it does not affect the existence when γ+ 6= γ−.

If γ− < γ+, the penalty for losses is strong and the optimal portfolio weights always exist.

However, if γ+ < γ−, there is no internal optimal portfolio weight, independent of A. When

γ− 6= γ+, the large-scale properties of the optimal portfolio are determined by both A and

the relative level of γ− and γ+; however, the latter has a dominating effect when losses/gains

are large and completely determines the boundedness of the optimal portfolio.

Proposition 7. (Optimal wealth.) Suppose that γ− < γ+.

1. Case 1: θ ≤ (w0 − 1)r.

γ− = 0.08).
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Suppose that A > A∗, where A∗ = max{ p−γ−

(1−p)−γ+
ξ
1−γ−
u

ξ
1−γ+
d

, (1−p)−γ−
p−γ+

ξ
1−γ−
d

ξ
1−γ+
u

}. In this case, the

optimal wealth in the two states is given by

w∗u − θ =
(
w0 − r−1θ

)[
pξ

1− 1
γ+

u + (1− p)ξ
1− 1

γ+

d

]−1

ξ
− 1
γ+

u > 0,

w∗d − θ =
(
w0 − r−1θ

)[
pξ

1− 1
γ+

u + (1− p)ξ
1− 1

γ+

d

]−1

ξ
− 1
γ+

d > 0,

(22)

and the value function is given by J = (w0−r−1θ)1−γ+

1−γ [pξ
1− 1

γ+
u + (1− p)ξ

1− 1
γ+

d ]γ+ > 0.

2. Case 2: (w0 − 1)r < θ ≤ w0r.

The EU has a local maximum over each of the three intervals, wu ∈ (−∞, θ], wu ∈

[θ, ŵu], and wu ∈ [ŵu,+∞), and the global maximum is the greatest of them.

3. Case 3: θ > w0r.

The EU has two local maximums, and the global maximum is the greater of them.

Specifically, one local maximum occurs for wd < θ < wu, at which the portfolio wealth

is governed by (A.4), and the other local maximum occurs for wu < θ < wd, at which

the wealth is governed by (A.3).

Proposition 7 part 1 shows that when the coefficient A is large and the reference point

is sufficiently low (or the initial wealth is sufficiently large w0 ≥ r−1θ + 1), the results on

the optimal wealth in this case of γ− 6= γ+ are the same as those in the case γ− = γ+ as

stated in Proposition 3. In both cases, the expected utility has a unique local maximum in

wu ∈ [θ, ŵu], which is also the global maximum, and hence the optimal wealth is higher than

the reference point at both states.

However, Proposition 7 part 2 shows that when A is small or when the reference point

is equal to or lower than but close to w0r, the local maximum in wu ∈ [θ, ŵu] may not be

the global maximum. As a result, the optimal wealth can be lower than the reference point

even when θ < w0r, and the optimal wealth can deviate from the reference point (nonzero

stock holdings) when θ = w0r.
20 These results are significantly different from those in the

case γ− = γ+ as stated in Proposition 3. In fact, for γ− < γ+, loss aversion does not apply

when wealth is close to the reference point. As a result, the EU becomes more complex and

can have multiple local maximums.

20The wealth is higher than the reference point only for wu ∈ [θ, ŵu].
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Proposition 7 part 3 shows that when θ > w0r, the expected utility has two local maxi-

mums, and the global maximum is the greater of them. This result for the case of γ− 6= γ+

is consistent with that in the case γ− = γ+ as stated in Proposition 3.

3.6 Multiple States

We extend the results in Section 3 to a general case with S states in the world. Assume that

there are N + 1 = S assets and the markets are complete.

3.6.1 Existence of Optimal Solutions

We divide all states into two sets, S+ and S−:

S+ = {s : ws ≥ θ}, S− = {s : ws < θ}.

For notational simplicity, we use 1+ to denote 1s∈S+ and 1− to denote 1s∈S− . We extend the

results on the existence condition for the binomial model in Proposition 2 to this general case

with S states.

Lemma 3. Given a non-trivial partition {S+,S−}, if

E[ξ1−1/γ(1+ − A1/γ1−)] > 0,

the EU has no global maximum.

Lemma 3 shows that if there exists a global maximum, we must have

E
[
ξ1−1/γ(1+ − A1/γ1−)

]
≤ 0, (23)

for any partition {S+, S−}. For each partition, condition (23) leads to a lower bound for A:

A ≥
(
E[ξ1−1/γ1+]

E[ξ1−1/γ1−]

)γ
=

(∑
s∈S+ psξ

1−1/γ
s∑

s∈S− psξ
1−1/γ
s

)γ
, ∀S+,S−, (24)

where ps is the probability for state s, s = 1, ..., S. To find the maximum of these lower

bounds, we only need to consider the cases where there is only 1 state with ws < θ by noting

that the state prices are positive. Thus, (24) is equivalent to

A ≥
(∑

t6=s ptξ
1−1/γ
t

psξ
1−1/γ
s

)γ
, ∀s ∈ {1, · · · , S}. (25)

By further noting that the EU is a continuous function on a compact set, we have the

following proposition on the conditions for the existence of global maximums.
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Proposition 8. Define

A = max
s

{(∑
t6=s ptξ

1−1/γ
t

psξ
1−1/γ
s

)γ}
. (26)

1. When A > A, the optimization problem has bounded solutions.

2. When A < A, the optimization problem has bounded solutions.

3. When A = A, the optimization problem has bounded solutions for θ ≤ w0r and does

not have hounded solutions for θ > w0r.

Proposition 8 shows that there is a lower bound A for A given by (26). The optimal

portfolio choice problem has interior solutions only if A is higher than this bound.

With S states, it follows from (26) that the lower bound A must satisfy

A ≥ (S − 1)γ,

and the equality holds only if psξ
1−1/γ
s = ptξ

1−1/γ
t , ∀s, t. When there are two states S = 2,

the bound (26) reduces to (10) in Proposition 2, and it is greater than or equal to 1. As the

number of states S increases, the lower boundA increases. This is because more states provide

more potential opportunities that are exploited with more assets, with which the expected

utility is more likely to approach infinity. When S is large, to have interior solutions, the

agent must have an extremely high aversion to losses that imposes large penalty for losses.

Because A increases with S without bound, when S is very large, e.g., a limiting case with

an infinitely many states, the EU has no global maximum.

Corollary 6. As the number of states S increases, the conditions for the existence of interior

solutions becomes stricter.

Proposition 8 also implies that if the EU has global optimums, we must have

A >
pγt ξ

γ−1
t

pγsξ
γ−1
s

, ∀s ∈ {1, · · · , S}. (27)

To understand this result, we consider the asymptotic behavior with budget preserving

changes in terminal wealth over any two states s, t, that is, (∆ws,∆wt) = ( ∆
psξs

,− ∆
ptξt

).

If condition (27) is violated, the investor can always increase her expected utility without

bound by assigning more wealth at state t and less wealth at state s accordingly. If there are

two states S = 2, then (27) can be a necessary and sufficient condition for global maximums

as shown in Proposition 2. When S > 2, it is not sufficient to guarantee the existence of

global maximums and we need a higher bound A.
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3.6.2 Optimal Solutions

In this section, we study the optimal solutions. To this end, we assume that the EU has

global maximums. The optimal solutions are summarized in the following proposition.

Proposition 9. (Optimal wealth and value function.) Suppose A > A.

1. When θ < w0r, the optimal wealth is given by

w∗ − θ =
w0 − r−1θ

E[ξ1−1/γ]
ξ−1/γ, (28)

and the value function is given by

J =

(
w0 − r−1θ

)1−γ

1− γ
(
E[ξ1−1/γ]

)γ
> 0. (29)

2. When θ = w0r, the optimal wealth is given by

w∗ − θ = 0, (30)

and the value function is given by J = 0.

3. When θ > w0r, for each non-trivial partition {S+,S−}, the EU has a local maximum,

at which the wealth is given by

(w − θ)1+ =
r−1θ − w0

E[ξ1−1/γ(−1+ + A1/γ1−)]
ξ−1/γ1+,

(θ − w)1− =
r−1θ − w0

E[ξ1−1/γ(−1+ + A1/γ1−)]
A1/γξ−1/γ1−,

(31)

and the expected utility is given by

EU = −(r−1θ − w0)1−γ

1− γ

(
E[ξ1−1/γ(−1+ + A1/γ1−)]

)γ
< 0. (32)

The global maximum is the greatest of these local maximums.

Proposition 9 shows again that the optimal solutions exhibit starkly different properties

for θ < w0r, θ = w0r, and θ > w0r. When θ < w0r, the EU has a unique local maximum,

which is the global maximum. At the global maximum, the terminal wealth in all states is

higher than the reference point w∗ > θ (if w0r > θ). In this case, the expected utility is

always positive.
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When θ = w0r, the terminal wealth in all states is equal to the reference point w∗ = θ,

and the expected utility equals zero.

When θ > w0r, there are multiple local maximums, one for each non-trivial partition

{S+,S−}. The global maximum is achieved at the partition that leads to the highest EU ,

and (32) shows that this partition leads to the lowest E[ξ1−1/γ1−].21 Furthermore, this lowest

must be achieved for partitions with only 1 state in S−. That is, it is optimal to set wealth

to be lower than the reference point in the state with the lowest ξ
1−1/γ
s ps and higher than

the reference point in all the other states.

Corollary 7. 1. When θ < w0r, the optimal wealth is higher than the reference point

w∗ > θ in all states.

2. When θ = w0r, the optimal wealth is equal to the reference point w∗ = θ in all states.

3. When θ > w0r, the optimal wealth is lower than the reference point in the states with

the lowest ξ
1−1/γ
s ps and higher than the reference point in all the other states.

Corollary 7 shows that when the reference point is high (θ > w0r), the optimal wealth is

lower than the reference point in one state but higher in all the other states. In this case,

the investor tends to pursuit negative skewness by leaving all pains in a single state.

Figure 6 illustrates the impacts of return skewness on the optimal portfolio when the

reference point is high (θ > w0r). We consider a case with three states and three assets,

including a riskless asset and two risky assets (assets A and B). To examine investor’s

demand for skewness, we let the gross returns of the two risky assets have the same mean

1.2 and same variance 0.2. We further fix asset A’s return skewness to be 0 and let asset

B’s return skewness vary. Panel (a) illustrates asset B’s gross returns Rb in the three states.

Asset B’s return Rb,d (Rb,u) in state d (u) satisfies Rb,d < r < Rb,u, and as Rb,m decreases, its

return skewness changes from negative to positive. Panel (b) shows that for different levels

of return skewness of asset B, the optimal wealth return tends to be very negative. The

skewness of the optimal wealth is much lower than the skewness of all individual assets. This

is because the optimal wealth is higher than the reference point in two states (u and m) but

21Equation (32) shows that this partition leads to the smallest E[ξ1−1/γ(−1+ + A1/γ1−)]. Note that

E[ξ1−1/γ(−1+ + A1/γ1−)] = (A1/γ + 1)E[ξ1−1/γ1−] − E[ξ1−1/γ ]. So the global maximum occurs for the

partition with the lowest E[ξ1−1/γ1−].
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Figure 6: This figure illustrates the impacts of return skewness on the optimal portfolio for

the case θ > w0r. The investment opportunity set contains three assets: a riskless asset

and two risky assets (A and B). The gross returns of the two risky assets have the same

mean 1.2 and same variance 0.2. We set asset A’s return skewness to be 0 and let asset B’s

skewness vary. Panel (a) plots asset B’s returns in the three states (u, m, and d) against its

return skewness. Panel (b) illustrates the return skewness of the optimal portfolio wealth.

Panel (c) illustrates optimal portfolio weights of the two risky assets. Panel (d) illustrates

the difference between the optimal portfolio wealth and the reference point (w∗ − θ) in the

three states. Here, A = 8, γ = 0.5, r = 1, w0 = 0.8, θ = 1, and the probabilities of the three

states (p1, p2, p3) = (1/2, 1/3, 1/6).
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much lower than the reference point in the other (state d) as illustrated in panel (d). As a

result, with low initial wealth, the agent actually seeks negative skewness.

Corollary 7 further shows that the “uninsured” state with wealth lower than the reference

point is the one with the lowest ξ
1−1/γ
s ps. It tends to be the worst state of the world with

the highest state price, against which it is most expensive to protect.

4 Incomplete Markets

Section 3 focuses on portfolio choice problems under complete markets. In this section, we

consider incomplete markets. In this case, there are infinitely many strictly positive state

prices, which lead to infinitely many constraints. We transform the problem to one with

finitely many constraints that can be solved with the Lagrangian approach. We find that the

optimal solution exhibits similar properties to that under complete markets.

With incomplete markets, there are infinitely many risk neutral measures. The maxi-

mization problem is:

max E[U(w)]

subject to EQ[w/w0] = r, ∀Q ∈M,
(33)

where M is an infinite set of all risk neutral measures. Therefore, there are infinitely many

constraints in problem (33). Indeed, these infinitely many restrictions can be reduced to

finite ones. The intuitive reason is that there are finite states, so we can always find a finite

base to represent the set M. For simplicity, we use the following notations:

Definition 1. Let W =
{

(q1, · · · , qn) ∈ Rn
∣∣q1R1 + · · · + qnRn = r

}
, where Ri is the gross

return of an asset at the ith state, and P+ = {(q1, · · · , qn)|q1 + · · · + qn = 1, qi ≥ 0, ∀i =

1, 2, · · · , n}. Then the set of risk-neutral measures is given by

M = W ∩ P+. (34)

We can always find a finite subset of M, say Q, such that every element in M can be

represented as a linear combination of Q. We denote Q = {Q1, · · · ,Ql}, where l ≤ n and

Qi satisfies EQi [R] = r, i = 1, · · · , l. Therefore, for any Q ∈M, it can be written as a linear

combination of Qi, that is,

Q = α1Q1 + · · ·+ αlQl, α1 + · · ·+ αl = 1. (35)

37



Hence EQ[R] = α1EQ1 [R] + · · ·+ αlEQl [R] = α1r + · · ·+ αlr = r.

Lemma 4. Maximization problem (33) with infinitely many constraints can be reduced to the

following one with finitely many constraints:

max E[U(w)]

subject to EQ[w] = w0r, ∀Q ∈ Q.
(36)

The Lagrangian is given by L = E[U(w)]−
∑l

i=1 λi(EQi [w]− w0r).

We reduce the portfolio choice problem under incomplete markets to one with a finite

number of constraints. As a result, this problem can be solved with the Lagrangian approach.

4.1 Trinomial Model

We consider a trinomial model. Suppose that there are only two assets, one risky and one

riskless assets, and three different states, ω1, ω2, ω3. The return of the risky asset equals

u,m, d at the three states, respectively. Without loss of generality, we assume d < m < u.

For any risk neutral measure Q = (q1, q2, q3), it must satisfiesuq1 +mq2 + dq3 = r,

q1 + q2 + q3 = 1,
(37)

and qi ≥ 0, i = 1, 2, 3. The fundamental set of solutions is given by

Q = k

(
m− d
u−m

,
d− u
u−m

, 1

)
+

(
r −m
u−m

,
u− r
u−m

, 0

)
, (38)

where the range of k is determined by the following inequalities:
0 ≤ k

m− d
u−m

+
r −m
u−m

≤ 1,

0 ≤ k
d− u
u−m

+
u− r
u−m

≤ 1,

0 ≤ k ≤ 1.

(39)

That is,

max

(
0,
m− r
m− d

)
≤ k ≤ u− r

u− d
. (40)
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Therefore, any risk neutral measure Q can be written as Q = αQ1 + (1 − α)Q2, where

α ∈ [0, 1], and the bases are given by
Q1 =

(
r −m
u−m

,
u− r
u−m

, 0

)
, Q2 =

(
r − d
u− d

, 0,
u− r
u− d

)
, if m < r,

Q1 =

(
0,
r − d
m− d

,
m− r
m− d

)
, Q2 =

(
r − d
u− d

, 0,
u− r
u− d

)
, if m ≥ r.

(41)

Corollary 8. The optimal portfolio choice problem (33) with three states and two assets can

be rewritten as the following one with two constraints:

max p1U(wu) + p2U(wm) + p3U(wd)

subject to EQ1 [w] = w0r,

EQ2 [w] = w0r,

(42)

where Q1 and Q2 are given by (41).

With three states, Corollary 8 shows that the optimization problem involves two con-

straints. In contrast, under complete markets, only one constraint is needed (see, e.g., (A.5)).

As a result, the solution existence condition in incomplete markets tends to be weaker than

in complete markets. The following proposition states the conditions under which the opti-

mization problem (42) has bounded solutions.

Proposition 10. (Existence of solutions.) Define

Aincomplete = max

{
E
[
[(R− r)+]1−γ)

]
E
[
[(r −R)+]1−γ)

] , E[[(r −R)+]1−γ)
]

E
[
[(R− r)+]1−γ)

]}, (43)

where (a)+ equals a if a > 0, and 0 otherwise.

1. When A > Aincomplete, the optimization problem (42) has bounded solutions.

2. When A < Aincomplete, the optimization problem does not have bounded solutions.

In (43), all states are divided into two groups, one with positive excess returns and the

other with negative excess returns. Proposition 10 shows that bounded optimal portfolios

exist when the loss aversion coefficient A is higher than the ratio of the probability-weighted

sums of utility gains between the two groups. These solution existence conditions under

incomplete markets are weaker than those under complete markets as stated in Proposition

8. Under complete markets, the investor can trade the Arrow-Debreu security for any state,
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and the solution existence conditions depend on the utility gain in any one state relative to

that in all the other states.

The solution existence conditions in Proposition 10 are consistent with the general “well-

posedness” condition that is defined in terms of the large-loss aversion degree (LLAD) in He

and Zhou (2011).22 However, the conditions under complete markets as stated in Proposition

8 are different from and stricter than the condition in He and Zhou (2011).

Proposition 11. (Optimal wealth.) Suppose A > Aincomplete.

1. When θ < w0r, if A ≥ p1
p3

(u−r
r−d )1−γ and A ≥ p3

p1
( r−d
u−r )

1−γ,23 the EU has a unique global

maximum, at which the optimal wealth is positive and governed by (A.9) and (A.12)

when m < r and governed by (A.10) and (A.16) when m ≥ r. The value function is

always positive.

2. When θ = w0r, the optimal wealth in the three states is given by w∗u = w∗m = w∗d = θ,

and the value function equals zero.

3. When θ > w0r, the EU has two local maximums, and the global maximum is the

greater of them. Specifically, when m < r, one local maximum occurs for wu < θ

and wm, wd > θ, at which the wealth is governed by (A.9) and (A.13); another local

maximum occurs for wu > θ and wm, wd < θ, at which the wealth is governed by (A.9)

and (A.14). When m ≥ r, one local maximum occurs for wd < θ and wu, wm > θ, at

which the wealth is governed by (A.10) and (A.17); another local maximum occurs for

wd > θ and wu, wm < θ, at which the wealth is governed by (A.10) and (A.18).

Proposition 11 shows that when θ < w0r, the expected utility has a unique global maxi-

mum, at which the optimal wealth is positive across all states. When θ = w0r, the investor

22He and Zhou (2011) define LLAD ≡ limx→∞[u(−x)/u(x)]. For utility (2), LLAD equals the loss aversion

A if γ− = γ+, ∞ if γ− < γ+, and 0 if γ− > γ+. Our results in Proposition 10 are consistent with their

general well-posedness condition. Conditions in Proposition 10 differ from the extreme-risk avoidance (XRA)

condition imposed in Ingersoll (2016) that is used to prevent unbounded utility from above. Ingersoll (2016)

defines that a utility has XRA if limx→∞[u(x)/u(−kx)], ∀k > 0. The XRA requires γ− < γ+, which is

consistent with our results in Proposition 6.
23These are technical assumptions that guarantee EU < 0 over wu ∈ [w̃u, ŵu] in the case m < r and over

wd ∈ [ŵd, w̃d] in the case m ≥ r, respectively. However, numerical simulations show that EU is decreasing

in both intervals under typical parameters, and theoretically ∂EU
∂wu

= −∞ at the four boundary points.

Comparing with the bounded solution existence condition (43), these assumptions tend to require higher A.

40



holds only the riskless asset and the optimal wealth is at the reference point in all states.

These results for the cases θ < w0r and θ = w0r under incomplete markets are the same

as those under complete markets as stated in Proposition 9. Although incomplete markets

reduce some potential investment opportunities, the investor can assign her wealth at least

as w0r, which is higher than the reference point, by simply holding the riskless asset. As a

result, the optimal wealth will not drop in the loss domain in any state, regardless of the

completeness of the markets.

However, when θ > w0r, the optimal portfolio are significantly different under complete

markets and under incomplete markets. Under complete markets, the investor assigns wealth

to be lower than the reference point in only one state, against which it is most expensive

to protect, but higher in all the other states, as shown in Proposition 9. However, under

incomplete markets, the investor divides all states into two groups, one with positive excess

returns and the other with negative excess returns, and she assigns positive wealth in all

the states in one group and negative wealth in all the states in the other group. In fact,

incomplete markets allow less opportunities, and the investor may not be able to allocate her

wealth to be lower than the reference point only in a single (the most expensive) state.

The above results are further illustrated in the following example.

Example 1. Suppose that r = 1.03, u = 1.10,m = 1.00, and d = 0.95. Then the risk-neutral

measure Q = (q1, q2, q3) satisfies 1.10q1 + 1.00q2 + 0.95q3 = 1.03,

q1 + q2 + q3 = 1.

So the risk-neutral measure has the form Q = (8/15+k,−3k, 7/15+2k), where k ∈ [−7/30, 0].

Taking k = −7/30 and 0, we can get the bases:

Q1 = (3/10, 7/10, 0), Q2 = (8/15, 0, 7/15).

Therefore, our optimization problem is

max p1U(wu) + p2U(wm) + p3U(wd)

subject to 3/10wu + 7/10wm = w0r,

8/15wu + 7/15wd = w0r,

(44)
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Figure 7: The figure plots the expected utility function EU against the portfolio weight

φ(≡ x/w0) for θ ≤ w0r (the left panel) and θ > w0r (the right panel). Here, A = 2, γ = 0.5,

θ = 1, r = 1.03, u = 1.1, m = 1, d = 0.95, and P = (1/2, 1/3, 1/6). We also set w0 = 2

(> r−1θ) for the left panel and w0 = 0.8 (< r−1θ) for the right panel.

where P = (p1, p2, p3) is the physical probability measure. Solving this optimization problem

is sufficient to get optimal wealth.

Figure 7 illustrates the expected utility function EU as a function of the portfolio weight

φ. Here we set a high value of A = 2 to have global maximum.24 In the left panel, θ ≤ w0r.

The EU has a unique local maximum (at φ∗ = 3.14), which is also the global maximum. In

this case, the value function is positive. In the right panel, θ > w0r. There are two local

maximums, and the global maximum is the greater of them (at φ∗ = 8.51). In this case, the

value function is negative.

4.2 Lognormally Distributed Returns

When the risky asset returns follow lognormal distributions (e.g., Merton, 1973), the markets

are incomplete in a static portfolio choice problem. The solution existence conditions are

24If the portfolio choice problem under complete markets has optimal solutions, the corresponding problem

under incomplete markets (i.e., with less assets available) should also have optimal solutions, since the EU

in the former case should be higher than or equal to that in the latter case.
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given by He and Zhou (2011, Theorem 2). Although there may not exist bounded optimal

solutions in this case, the condition of nonexistence of solutions is stricter than the case

of complete markets as stated in Section 3.6. This is because incomplete markets restrict

investment opportunities and largely prevent investor’s utility from approaching infinity.

5 Conclusion

Loss aversion is one of the central topics in behavioural finance. When studying its impli-

cations for portfolio choice and asset pricing, the literature often applies certain variations

to the utility function proposed in Tversky and Kahneman (1992) to ensure that the op-

timal portfolio is bounded and computes the optimal portfolio numerically. However, the

properties of the optimal policy under loss aversion have not been rigorously understood.

Furthermore, the reference point plays a key role in decision making under loss aversion,

and different reference points have been used in the literature. However, there is a lack of

systematic understanding of its effects. This paper studies the optimal choice under pure loss

aversion. We analytically solve for the existence conditions of optimal portfolios and provide

a general analysis of the reference point.

We show that there is no optimal solution for half of the parameter space in which the

loss aversion is low. This is essentially due to insufficient penalty for losses. However, there

always exist optimal solutions for the other half of the parameter space. The lower bound

of loss aversion above which bounded optimal solutions exist increases without bound as

asset returns are more skewed or the number of states of the world increases. Bounded

solutions are more likely to exist under incomplete markets than complete markets. Under

wealth constraint, optimal solutions always exist but are often given by corner solutions. The

lack of solution over a substantial fraction of the parameter space and in some economically

relevant cases represents a limitation of loss aversion in the application in economics.25

We find that when the optimal solutions exist, the reference point plays a key role in

determining the properties of the optimal portfolios. One popular reference point chosen

in the literature is the investor’s current wealth. We find that in this case, the investor

behaves identically to a standard risk averse investor, and her holdings of the risky asset are

25For example, De Giorgi, Hens and Levy (2004) find that a CAPM equilibrium does not exist when

investors have prospect theory preferences with heterogeneous preference parameters.
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determined by the risk premium. Another commonly used reference point is the investor’s

current wealth scaled up by the gross riskless rate. Our results show that a loss averse investor

in this case refrains from investing in the risky asset, irrespective of its return distribution.

In the above two cases, the optimal portfolio (if exists) does not depend on the coefficients

of loss aversion and risk seeking. This result starkly differs from that in the models that use

certain portfolio constraints or impose certain restrictions/variations to the utility function.

Loss aversion truly has effects on the optimal portfolio only when the investor has a

reference point higher than her wealth multiplied by the gross riskless rate, which is, however,

less studied in the literature. In this case, the coefficients of loss aversion and risk seeking start

to affect the optimal solutions (if exist), and the optimal portfolios distinctly differ from those

under the risk aversion utility functions. We show that the optimal stock holdings are not

determined by the risk premium. The investor can go long (short) an asset with an arbitrarily

low (high) risk premium. The investor trades more aggressively than a risk averse investor

and tends to take a large position, either long or short, in the risky asset, especially when

the asset’s returns are highly skewed. The nonconcavity of the loss aversion utility function

leads to discontinuity in the parameter space. A small parameter change can result in a big

jump in the optimal portfolio and the value function, which poses significant challenges to

numerical solution methods as usually used in this literature.
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A Proofs

A.1 Proof of Proposition 1

Suppose that the terminal wealth is higher than or equal to the reference point at all states.

Then the value function under the HARA utility function (4) is given by

max
x

E
[(w − θ)1−γ

1− γ

]
= max

x
E
[ [(w0 − x′1)r + x′R− θ]1−γ

1− γ

]
= max

x
E
[ [(ŵ0 − x′1)r + x′R]1−γ

1− γ

]
,

(A.1)

where ŵ0 = w0 − r−1θ. Equation (A.1) shows that when ŵ0 = w0 − r−1θ ≥ 0, the optimal

portfolio problem is equivalent to the standard portfolio problem under the CRRA utility with

nonnegative initial wealth. In the latter problem, the optimal wealth is always nonnegative,

ŵ∗ = (ŵ0 − x∗′1)r + x∗′R ≥ 0, which is equivalent to w∗ − θ ≥ 0, where the equality holds

when ŵ0 = 0, and x∗ is the optimal holdings of risky assets.

On the other hand, the optimal wealth under the loss aversion utility function (3) is also

higher than or equal to the reference point when w0 − r−1θ ≥ 0, as shown in Proposition 9.

Therefore, the HARA utility and the loss aversion utility, which are concave and identical in

the gain domain, produce the same optimal portfolio in this case.

A.2 Proof of Lemma 1

Suppose wu is sufficiently large. Then wd is low by the budget constraint (6), and the expected

utility becomes

EU =
1

1− γ

[
p(wu − θ)1−γ − A(1− p)

(
θ − w0 − pξuwu

(1− p)ξd

)1−γ]
.

When wu → +∞,

EU ≈
[
p− A(1− p)

( pξu
(1− p)ξd

)1−γ]w1−γ
u

1− γ
,

leading to the asymptotic behavior (8).

When wu is sufficiently low, the expected utility becomes

EU =
1

1− γ

[
− Ap(θ − wu)1−γ + (1− p)

(w0 − pξuwu
(1− p)ξd

− θ
)1−γ]

.
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When wu → −∞,

EU ≈
[
− Ap+ (1− p)

( pξu
(1− p)ξd

)1−γ](−wu)1−γ

1− γ
,

leading to the asymptotic behavior (9).

A.3 Proof of Proposition 2

Lemma 1 shows that when A > A, the EU goes to −∞ as wu → ±∞. Because the EU is a

continuous function on a compact set, the EU has a global maximum.

When A < A, the EU goes to +∞ as wu → +∞ or as wu → −∞. In this case, there is

no optimal solution for problem (5).

When A = A, whether there exist optimal solutions depends on the relative level of

the reference point and initial wealth. When θ > w0r, the EU is negative as shown in

Appendix A.4. The EU approaches zero as x → +∞ if ( p
1−p)γ( ξd

ξu
)1−γ ≥ 1, or as x → −∞

if ( p
1−p)γ( ξd

ξu
)1−γ ≤ 1. In either case, the optimal holdings are infinite. When θ < w0r, the

optimal holdings are bounded as shown Appendix A.4. When θ = w0r, if ( p
1−p)γ( ξd

ξu
)1−γ ≥ 1,

any x ≥ 0 is optimal (the EU is zero), and if ( p
1−p)γ( ξd

ξu
)1−γ ≤ 1, any x ≤ 0 is optimal (the

EU is zero).

A.4 Proof of Proposition 3

The EU as a function of wu is given by

EU =



1
1−γ

[
p(wu − θ)1−γ + (1− p)(w0−pξuwu

(1−p)ξd
− θ)1−γ], if wu ≥ θ and wu ≤ ŵu;

1
1−γ

[
p(wu − θ)1−γ − A(1− p)(θ − w0−pξuwu

(1−p)ξd
)1−γ], if wu ≥ θ and wu ≥ ŵu;

1
1−γ

[
− Ap(θ − wu)1−γ + (1− p)(w0−pξuwu

(1−p)ξd
− θ)1−γ], if wu ≤ θ and wu ≤ ŵu;

− A
1−γ

[
p(θ − wu)1−γ + (1− p)(θ − w0−pξuwu

(1−p)ξd
)1−γ], if wu ≤ θ and wu ≥ ŵu,

where ŵu ≡ w0−(1−p)ξdθ
pξu

.
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A.4.1 w0 ≥ r−1θ

Note that r−1 = E[ξ] = pξu + (1 − p)ξd. When w0 ≥ r−1θ, we have ŵu ≥ θ. Thus, the case

wu < θ and wu > ŵu cannot occur. The EU becomes

EU =


1

1−γ

[
p(wu − θ)1−γ + (1− p)( pξu

(1−p)ξd
)1−γ(ŵu − wu)1−γ], if wu ∈ [θ, ŵu];

1
1−γ

[
p(wu − θ)1−γ − A(1− p)( pξu

(1−p)ξd
)1−γ(wu − ŵu)1−γ], if wu ∈ [ŵu,+∞);

1
1−γ

[
− Ap(θ − wu)1−γ + (1− p)( pξu

(1−p)ξd
)1−γ(ŵu − wu)1−γ], if wu ∈ (−∞, θ].

The EU is concave when wu ∈ [θ, ŵu]; thus, it has a local maximum between θ and ŵu.
26 In

addition,

EU =


w1−γ
u

1−γ

[
p− A(1− p)( pξu

(1−p)ξd
)1−γ], when wu → +∞;

(−wu)1−γ

1−γ

[
− Ap+ (1− p)( pξu

(1−p)ξd
)1−γ], when wu → −∞.

If p− A(1− p)( pξu
(1−p)ξd

)1−γ > 0, the EU approaches +∞ when wu → +∞, the EU has a

local minimum in the interval (ŵu,+∞) and there is no global maximum.

If −Ap + (1− p)( pξu
(1−p)ξd

)1−γ > 0, the EU approaches +∞ when wu → −∞, the EU has

a local minimum in the interval [θ,+∞) and there is no global maximum.

Thus, to have a global maximum, we focus on the case p− A(1− p)( pξpu

(1−p)ξd
)1−γ ≤ 0 and

−Ap+ (1− p)( pξu
(1−p)ξd

)1−γ ≤ 0.

1. if p− A(1− p)( pξu
(1−p)ξd

)1−γ < 0, when wu → +∞, the EU approaches −∞.

2. if −Ap+ (1− p)( pξu
(1−p)ξd

)1−γ < 0, when wu → −∞, the EU approaches −∞.

3. if p − A(1 − p)( pξu
(1−p)ξd

)1−γ = 0, when wu → +∞, the EU approaches 0. In this case,

we have −Ap+ (1− p)( pξu
(1−p)ξd

)1−γ < 0.

4. if −Ap+ (1− p)( pξu
(1−p)ξd

)1−γ = 0, when wu → −∞, the EU approaches 0. In this case,

we have p− A(1− p)( pξu
(1−p)ξd

)1−γ < 0.

Finally, if p − A(1 − p)( pξu
(1−p)ξd

)1−γ ≤ 0, we have ∂EU
∂wu

< 0 over wu ∈ [ŵu,+∞), and if

−Ap + (1 − p)( pξu
(1−p)ξd

)1−γ ≤ 0, we have ∂EU
∂wu

> 0 over wu ∈ (−∞, θ]. Therefore, the local

maximum between θ and ŵu is the global maximum.

26Here we assume γ > 0. If γ = 0, the EU is linear not concave in the interval wu ∈ [θ, ŵu], and the

optimum occurs at the boundary.
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Now, we derive the optimal wealth and value function. We use the Lagrangian approach

to find local maximum. The Lagrangian is given by

L = p
(wu − θ)1−γ

1− γ
+ (1− p)(wd − θ)1−γ

1− γ
− λ
[
pξuwu + (1− p)ξdwd − w0

]
,

where λ > 0 is the Lagrange multiplier. The FOC for the local maximum is

(wu − θ)−γ = λξu, (wd − θ)−γ = λξd.

So

wu − θ = (ξd/ξu)
1
γ (wd − θ).

The budget constraint leads to

w0 − r−1θ = pξu(wu − θ) + (1− p)ξd(wd − θ) =
[
pξu(ξd/ξu)

1
γ + (1− p)ξd

]
(wd − θ).

The value function is

J =
1

1− γ
[
p(ξd/ξu)

1−γ
γ + (1− p)

]
(wd − θ)1−γ

=
(w0 − r−1θ)1−γ

1− γ
[
p(ξd/ξu)

1−γ
γ + (1− p)

]
(wd − θ)1−γ[pξu(ξd/ξu) 1

γ + (1− p)ξd
]γ−1

=
(w0 − r−1θ)1−γ

1− γ

[
pξ

1− 1
γ

u + (1− p)ξ
1− 1

γ

d

]γ
.

A.4.2 w0 < r−1θ

In this case, ŵu < θ; thus, the case wu > θ and wu < ŵu cannot occur. So the EU is

EU =


1

1−γ

[
p(wu − θ)1−γ − A(1− p)( pξu

(1−p)ξd
)1−γ(wu − ŵu)1−γ], if wu ∈ [θ,+∞);

1
1−γ

[
− Ap(θ − wu)1−γ + (1− p)( pξu

(1−p)ξd
)1−γ(ŵu − wu)1−γ], if wu ∈ (−∞, ŵu];

− 1
1−γ

[
A(p(θ − wu)1−γ + (1− p)( pξu

(1−p)ξd
)1−γ(wu − ŵu)1−γ], if wu ∈ [ŵu, θ].

The utility function is convex when wu ∈ [ŵu, θ] and

EU =


w1−γ
u

1−γ

[
p− A(1− p)( pξu

(1−p)ξd
)1−γ], when wu → +∞;

(−wu)1−γ

1−γ

[
− Ap+ (1− p)( pξu

(1−p)ξd
)1−γ], when wu → −∞.

The EU has a local minimum between θ and ŵu.

1. If p−A(1− p)( pξu
(1−p)ξd

)1−γ > 0, when wu → +∞, the EU approaches +∞, and there is

no global maximum.
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2. If p−A(1− p)( pξu
(1−p)ξd

)1−γ < 0, when wu → +∞, the EU approaches −∞, the EU has

a local maximum for wu ∈ (θ,∞) (and thus wd < θ).

The FOC for the local maximum is

(wu − θ)−γ = λξu, A(θ − wd)−γ = λξd.

So

wu − θ =
(1/ξu)

1
γ

(A/ξd)
1
γ

(θ − wd).

The budget constraint leads to

r−1θ−w0 = −pξu(wu− θ) + (1− p)ξd(θ−wd) =

(
− pξu

(1/ξu)
1
γ

(A/ξd)
1
γ

+ (1− p)ξd
)

(θ−wd).

The quasi-value function is

J =
1

1− γ

[
p

(
(1/ξu)

1
γ

(A/ξd)
1
γ

)1−γ

− A(1− p)
]
(θ − wd)1−γ

=
(r−1θ − w0)1−γ

1− γ

[
p

(
(1/ξu)

1
γ

(A/ξd)
1
γ

)1−γ

− A(1− p)
][

(1− p)ξd − pξu
(1/ξu)

1
γ

(A/ξd)
1
γ

]γ−1

= −(r−1θ − w0)1−γ

1− γ

(
(1− p)A

1
γ ξ

1− 1
γ

d − pξ
1− 1

γ
u

)γ
.

3. If −Ap+ (1− p)( pξu
(1−p)ξd

)1−γ > 0, when wu → −∞, the EU approaches +∞, and there

is no global maximum.

4. If −Ap+ (1− p)( pξu
(1−p)ξd

)1−γ < 0, when wu → −∞, the EU approaches −∞, and there

is a local maximum in the interval [−∞, ŵu]. This case is symmetric to case (2).

5. If p− A(1− p)( pξu
(1−p)ξd

)1−γ = 0, when wu → +∞, we have EU → 0, and ∂EU
∂w1

> 0 over

wu ∈ [θ,+∞); thus, there is no local maximum over wu ∈ [θ,+∞).

6. If −Ap+ (1− p)( pξu
(1−p)ξd

)1−γ = 0, when wu → −∞, we have EU → 0, and ∂EU
∂w1

< 0 over

wu ∈ (−∞, ŵu]; thus, there is no local maximum over wu ∈ (−∞, ŵu].

Finally, if p− A(1− p)( pξu
(1−p)ξd

)1−γ < 0 and −Ap + (1− p)( pξu
(1−p)ξd

)1−γ < 0, there are two

local maximum, one in [θ,+∞) and one in (−∞, ŵu], and one of them is the global maximum.
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A.5 Proof of Corollary 2

When w0r < θ and A > A, the EU has two local maximum, and the global maximum is the

greater of EU+ and EU−. Proposition 3 shows that J− < J+ if and only if (1 − p)ξ
1− 1

γ

d <

pξ
1− 1

γ
u .

A.6 Proof of Proposition 4

The expected utility (1) becomes

p
[
(wu−θ)1−γ1{wu≥θ}−A(θ−wu)1−γ1{wu<θ}

]
+(1−p)

[
(wd−θ)1−γ1{wd≥θ}−A(θ−wd)1−γ1{wd<θ}

]
,

where wu and wd are the terminal wealth at states u and d, respectively, given by

wu = w0r + x(u− r), wd = w0r + x(d− r). (A.2)

First consider the case when the optimal wealth is positive in both states. The FOC is

p[w0r − θ + x(u− r)]−γ(u− r) = −(1− p)[w0r − θ + x(d− r)]−γ(d− r),

Let k = [ p(u−r)
(1−p)(r−d)

]
1
γ . The FOC becomes w0r − θ + x(u − r) = k[w0r − θ + x(d − r)]. The

optimal holding x is

x∗ =
(k − 1)(w0r − θ)

(u− r) + k(r − d)
.

Next we consider the case when the optimal wealth is negative in one of the states. The

FOC isp[w0r − θ + x+(u− r)]−γ(u− r) = −(1− p)A[θ − w0r − x+(d− r)]−γ(d− r), if w0r + x+(d− r) < θ;

pA[θ − w0r − x−(u− r)]−γ(u− r) = −(1− p)[w0r − θ + x−(d− r)]−γ(d− r), if w0r + x−(u− r) < θ.

Let k+ = [ p(u−r)
A(1−p)(r−d)

]
1
γ and k− = [ Ap(u−r)

(1−p)(r−d)
]
1
γ . The FOC becomesw0r − θ + x+(u− r) = −kd[w0r − θ + x+(d− r)], if w0r + x+(d− r) < θ;

−[w0r − θ + x−(u− r)] = ku[w0r − θ + x−(d− r)], if w0r + x−(u− r) < θ.

The optimal stock holdings x are

x± =
(k± + 1)(w0r − θ)

(u− r)− k±(r − d)
.
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A.7 Proof of Proposition 5

The proof follows from Appendices A.3–A.4.

A.8 Proof of Proposition 6

When wu is sufficiently large, the expected utility becomes

EU = p
(wu − θ)1−γ+

1− γ+

− (1− p) A

1− γ−

[
θ − w0 − pξuwu

(1− p)ξd

]1−γ−
.

When wu → +∞,

EU ≈ p
(wu)

1−γ+

1− γ+

− (1− p)A(wu)
1−γ−

1− γ−

[ pξu
(1− p)ξd

]1−γ−
.

It goes to +∞ if γ+ < γ− and goes to −∞ if γ− < γ+.

When wu is sufficiently low, the expected utility becomes

EU = −pA(θ − wu)1−γ−

1− γ−
+ (1− p) 1

1− γ+

[w0 − pξuwu
(1− p)ξd

− θ
]1−γ+

.

When wu → −∞,

EU ≈ −pA(−wu)1−γ−

1− γ−
+ (1− p)(−wu)1−γ+

1− γ+

[ pξu
(1− p)ξd

]1−γ+
.

It also goes to +∞ if γ+ < γ− and goes to −∞ if γ− < γ+.

A.9 Proof of Proposition 7

The EU as a function of wu is given by

EU =



1
1−γ+

[
p(wu − θ)1−γ+ + (1− p)(w0−pξuwu

(1−p)ξd
− θ)1−γ+

]
, if wu ≥ θ and wu ≤ ŵu;

1
1−γ+p(wu − θ)

1−γ+ − A 1
1−γ− (1− p)(θ − w0−pξuwu

(1−p)ξd
)1−γ− , if wu ≥ θ and wu ≥ ŵu;

−A 1
1−γ−p(θ − wu)

1−γ− + 1
1−γ+ (1− p)(w0−pξuwu

(1−p)ξd
− θ)1−γ+ , if wu ≤ θ and wu ≤ ŵu;

− A
1−γ−

[
p(θ − wu)1−γ− + (1− p)(θ − w0−pξuwu

(1−p)ξd
)1−γ−

]
, if wu ≤ θ and wu ≥ ŵu,

where ŵu ≡ w0−(1−p)ξdθ
pξu

.
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A.9.1 w0 ≥ r−1θ

Note that r−1 = E[ξ] = pξu + (1 − p)ξd. When w0 ≥ r−1θ, we have ŵu ≥ θ. Thus, the case

wu < θ and wu > ŵu cannot occur. The EU becomes

EU =


1

1−γ+

[
p(wu − θ)1−γ+ + (1− p)(w0−pξuwu

(1−p)ξd
− θ)1−γ+

]
, if wu ∈ [θ, ŵu];

1
1−γ+p(wu − θ)

1−γ+ − A 1
1−γ− (1− p)(θ − w0−pξuwu

(1−p)ξd
)1−γ− , if wu ∈ [ŵu,+∞);

−A 1
1−γ−p(θ − wu)

1−γ− + 1
1−γ+ (1− p)(w0−pξuwu

(1−p)ξd
− θ)1−γ+ , if wu ∈ (−∞, θ].

The EU is concave when wu ∈ [θ, ŵu]; thus, it has a local maximum between θ and ŵu. Now,

we derive the wealth at this local maximum. We use the Lagrangian approach to find local

maximum. The Lagrangian is given by

L = p
(wu − θ)1−γ+

1− γ+

+ (1− p)(wd − θ)1−γ+

1− γ+

− λ
[
pξuwu + (1− p)ξdwd − w0],

where λ > 0 is the Lagrange multiplier. The FOC for the local maximum is

(wu − θ)−γ+ = λξu, (wd − θ)−γ+ = λξd.

So

wu − θ = (ξd/ξu)
1
γ+ (wd − θ).

Together with the budget constraint, the wealth at this local maximum given by (22).

Next, we look at wu ∈ (−∞, θ]. When wu → −∞, EU = −Ap (−wu)1−γ−

1−γ− → −∞. In this

interval,
∂EU

∂wu
= p
[
A(θ − wu)−γ− −

p−γ+

(1− p)−γ+
ξ1−γ+
u

ξ
1−γ+
d

(ŵu − wu)−γ+
]
.

To have ∂EU
∂wu

> 0 (i.e., the EU is increasing over wu ∈ (−∞, θ]), we need to demonstrate

A > A+
(θ−wu)γ−

(ŵu−wu)γ+
, where A+ ≡ p−γ+

(1−p)−γ+
ξ
1−γ+
u

ξ
1−γ+
d

. In fact,

A+

(θ − wu)γ−
(ŵu − wu)γ+

= A+

( θ − wu
ŵu − wu

)γ−
(ŵu − wu)γ−−γ+

<A+ × 1× (ŵu − θ)γ−−γ+ =
p−γ−

(1− p)−γ+
ξ1−γ−
u

ξ
1−γ+
d

(w0 − r−1θ)γ−−γ+ ≤ A,

where the last inequality holds true if w0 − r−1θ ≥ 1 and A ≥ p−γ−

(1−p)−γ+
ξ
1−γ−
u

ξ
1−γ+
d

.

Finally, we consider wu ∈ [ŵu,+∞). When wu →∞, EU =→ −∞. In this interval,

∂EU

∂wu
= p
[
(wu − θ)−γ+ − A

p−γ−

(1− p)−γ−
ξ1−γ−
u

ξ
1−γ−
d

(wu − ŵu)−γ−
]
.
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To have ∂EU
∂wu

< 0, we need to demonstrate A > A−
(wu−θ)γ+

(wu−ŵu)γ−
, where A− ≡

(1−p)−γ−
p−γ−

ξ
1−γ−
d

ξ
1−γ−
u

. In

fact,

A−
(wu − θ)γ+

(wu − ŵu)γ−
= A−

(wu − ŵu
wu − θ

)γ−
(wu − θ)γ−−γ+

<A− × 1× (ŵu − θ)γ−−γ+ =
(1− p)−γ−
p−γ+

ξ
1−γ−
d

ξ
1−γ+
u

(w0 − r−1θ)γ−−γ+ ≤ A,

where the last inequality holds true if w0 − r−1θ ≥ 1 and A ≥ (1−p)−γ−
p−γ+

ξ
1−γ−
d

ξ
1−γ+
u

.

Therefore, when w0 − r−1θ ≥ 1, A ≥ p−γ−

(1−p)−γ+
ξ
1−γ−
u

ξ
1−γ+
d

, and A ≥ (1−p)−γ−
p−γ+

ξ
1−γ−
d

ξ
1−γ+
u

, the local

maximum over wu ∈ [θ, ŵu] is also the global maximum.

It is worth noting that ∂EU
∂wu

can be negative in both wu ∈ (−∞, θ] and wu ∈ [ŵu,+∞)

if A is sufficiently small or if w0 − r−1θ is close to zero. Especially, when w0 = r−1θ, ∂EU
∂wu

is

negative and the EU is decreasing in a left neighborhood of wu = θ, and ∂EU
∂wu

is positive and

the EU is increasing in a right neighborhood of wu = ŵu.

A.9.2 w0 < r−1θ

In this case, ŵu < θ; thus, the case wu > θ and wu < ŵu cannot occur. So the EU is

EU =


1

1−γ+p(wu − θ)
1−γ+ − A 1

1−γ− (1− p)(θ − w0−pξuwu
(1−p)ξd

)1−γ− , if wu ∈ [θ,+∞);

−A 1
1−γ−p(θ − wu)

1−γ− + 1
1−γ+ (1− p)(w0−pξuwu

(1−p)ξd
− θ)1−γ+ , if wu ∈ (−∞, ŵu];

− A
1−γ−

[
p(θ − wu)1−γ− + (1− p)(θ − w0−pξuwu

(1−p)ξd
)1−γ−

]
, if wu ∈ [ŵu, θ].

The utility function is convex when wu ∈ [ŵu, θ], and EU → −∞ as wu → ±∞.

The EU has a local maximum over wu ∈ (−∞, ŵu]. The FOC for the local maximum is

A(θ − wu)−γ− = λξu, (wd − θ)−γ+ = λξd.

Together with the budget constraint, we obtain the following equation governing wu:

(θ − wu)−γ− =
1

A

p−γ+

(1− p)−γ+
ξ1−γ+
u

ξ
1−γ+
d

(ŵu − wu)−γ+ . (A.3)

Then wd is solved for using the budget constraint.

When wu ∈ (−∞, ŵu], the FOC for the local maximum leads to the following equation

governing wu:

(wu − θ)−γ+ = A
p−γ−

(1− p)−γ−
ξ1−γ−
u

ξ
1−γ−
d

(wu − ŵu)−γ− . (A.4)
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A.10 Proof of Lemma 3

The budget constraint is given by E[ξŵ] = w0, where w is a wealth distribution across the

S states. Given a starting wealth distribution ŵ that satisfies the budget constraint, any

wealth w under the budget constraint should satisfy the following budget-preserving change:

w − ŵ = ξ−1/γ(1+ − a1−)∆, with a = E[ξ1−1/γ1+]/E[ξ1−1/γ1−]. The EU is given by

EU =
1

1− γ
E
[
(w − θ)1−γ1+ − A(θ − w)1−γ1−

]
=

1

1− γ
E
[(
ŵ + ξ−1/γ∆− θ

)1−γ
1+ − A

(
θ − ŵ + aξ−1/γ∆

)1−γ
1−

]
.

When ∆→ +∞,

EU ≈∆1−γ

1− γ
(
E[ξ1−1/γ1+]− Aa1−γE[ξ1−1/γ1−]

)
=

∆1−γ

1− γ
(
E[ξ1−1/γ1+]

)1−γ[
(E[ξ1−1/γ1+])γ − A(E[ξ1−1/γ1−])γ

]
.

This goes to +∞ if E[ξ1−1/γ(1+ − A1/γ1−)] > 0.

A.11 Proof of Proposition 9

The objective function is given by

max
{ws}

E[U(w)] = max
{ws}

∑
s

psU(ws),

such that w0 =
∑

s psξsws = E[ξw]. We will consider interior solutions for the case. To this

end, we use Lagrangian approach. The Lagrangian is given by

E[U(w)]− λ
(
E[ξw]− w0

)
, (A.5)

where λ ≥ 0 is the Lagrange multiplier.

When w0 ≥ E[ξ]θ, the FOC is given by (w − θ)−γ = λξ. The budget constraint leads

to w0 − E[ξ]θ = E[ξ(w − θ)] = E
[
ξ(λξ)−1/γ

]
= λ−1/γE

[
ξ1−1/γ)

]
. Therefore, the Lagrange

multiplier is given by λ =
(
w0−E[ξ]θ

E[ξ1−1/γ ]

)−γ
, leading to the optimal wealth and the value function

given by (28) and (29).

When w0 < E[ξ]θ, assume a local optimum occurs at one partition S+ and S−. The FOC

is given by

(w − θ)−γ1+ = λξ1+, A(θ − w)−γ1− = λξ1−.
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The budget constraint leads to

w0−E[ξ]θ = E[ξ(w−θ)] = E
[
ξ
(

(λξ)−1/γ1+ − (λξ/A)−1/γ1−

)]
= λ−1/γE

[
ξ1−1/γ(1+−A1/γ1−)

]
.

Therefore, the Lagrange multiplier is given by

λ = (E[ξ]θ − w0)−γ
(
E[ξ1−1/γ(−1+ + A1/γ1−)]

)γ
. (A.6)

Note that λ > 0, so w0 − E[ξ]θ > 0 and E[ξ1−1/γ(1+ − A1/γ1−)] > 0 has the same sign.

The expected utility function EU is given by

EU =
1

1− γ
E
[(

(λξ)−1/γ
)1−γ

1+ − A
(
(λξ/A)−1/γ

)1−γ
1−

]
=
λ1−1/γ

1− γ
E[ξ1−1/γ(1+ − A1/γ1−)].

(A.7)

By substituting (A.6) into (A.7), the EU becomes (32).

The global maximum is achieved only for partition with only 1 state in S−. Now consider

partitions with only 1 state in S−. Suppose S− = {t}, that is, state t is the only state with

wealth lower than θ. In this case, E[ξ1−1/γ1−] = ξ
1−1/γ
t pt, and we can explicitly solve the

budget constraint:

w0 − E[ξ]θ =
∑
s 6=t

psξs(ws − θ) + ptξt(wt − θ).

Therefore,

θ − wt =

∑
s 6=t psξs(ws − θ)

ptξt
− (w0 − E[ξ]θ). (A.8)

The EU can be express in unconstrained variables

EU =
∑
s 6=t

ps
(ws − θ)1−γ

1− γ
− Apt

(θ − wt)1−γ

1− γ
,

where θ − wt is given by equation (A.8).

FOC for w∗s , s 6= t, is

ps(w
∗
s − θ)−γ = Apt(θ − w∗t )−γ

psξs
ptξt

.

The Hessian matrix is

Hs,s′ = −γps(w∗s − θ)−γ−1δs,s′ + Apt(θ − w∗t )−γ−1psξsps′ξs′

(ptξt)2
.

Using the FOC condition, the Hessian can be written as

Hs,s′ = −γApt(θ − w∗t )−γ
psξs
ptξt

(w∗s − θ)−1δs,s′ + γApt(θ − w∗t )−γ−1psξsps′ξs′

(ptξt)2
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= γ
Apt
ξt

(θ − w∗t )−γ
1

ptξt

(
− psξs
w∗s − θ

δs,s′ +
psξsps′ξs′

ptξt(θ − w∗t )

)
.

We should be able to show that H is negative definite. Define dQ
dP = ξ

E[ξ]
, thus qs =

psξs/
∑

s(psξs), which are the risk-neutral probabilities. The Hessian can be written as

Hs,s′ = γ
Apt
ξtqt

(θ − w∗t )−γ
(
− qs
w∗s − θ

δs,s′ +
qsqs′

qt(θ − w∗t )

)

= γ
Apt
ξtq2

t

(θ − w∗t )−γ−1

(
−θ − w

∗
t

w∗s − θ
qsqtδs,s′ + qsqs′

)
.

Only terms in the bracket are relevant for determining whether H is negative-definite,

hs,s′ =

(
−θ − w

∗
t

w∗s − θ
qsqtδs,s′ + qsqs′

)
= (−asqsqtδs,s′ + qsqs′) ,

where as =
θ−w∗t
w∗s−θ

qsqtδs,s′ . Thus,

h =


−a1q1qt + q1q1 q1q2 ... q1qS

q1q2 −a2q2qt + q2q2 ... q2qS
...

...
...

...

q1qS q2qS ... −aSqSqt + qSqS



=


−a1qt + q1 q1 ... q1

q2 −a2qt + q2 ... q2

...
...

...
...

qS qS ... −aSqt + qS

Πsqs.

Subtracting column 1 from column s for all s 6= 1, we get

h′ =


−a1qt + q1 a1qt ... a1qt

q2 −a2qt ... 0
...

...
...

...

qS 0 ... −aSqt


The determinant of h′ is

(−a1qt + q1)Πs6=1(−asqt)− q2Πs 6=2(−asqt) + ... =
(

Πs(−asqt)
)(

1−
S∑
s=1

qs
qtas

)
.

If w0 − E[ξ]θ < 0, then(
1−

S∑
s=1

qs
qtas

)
=

1

qt(θ − w∗t )

(
qt(θ − w∗t )−

∑
s 6=t

qs(w
∗
s − θ)

)
=
−(E[ξ]θ − w0)

qt(θ − w∗t )
> 0.

56



The above equation can be true for all principle minors of dimension u, u = 1, ..., S − 1, so

the sign of their determinant is (−1)u. This implies that the eigenvalues of h are all negative;

thus h is negative definite. Therefore, the Hessian is negative definite, and the EU has a

local maximum at w∗.

A.12 Proof of Proposition 10

We first consider the case m < r. In this case,

Q1 = (q11, q12, 0) ≡
(
r −m
u−m

,
u− r
u−m

, 0

)
, Q2 = (q21, 0, q23) ≡

(
r − d
u− d

, 0,
u− r
u− d

)
.

The two constraints in problem (42) lead to

wm =
w0r − q11wu

q12

, wd =
w0r − q21wu

q23

. (A.9)

When wu → +∞, we have

EU ≈ p1
1

1− γ
w1−γ
u − Ap2

1

1− γ

(q11

q12

wu

)1−γ
− Ap3

1

1− γ

(q21

q23

wu

)1−γ

=
[
p1 − Ap2

(q11

q12

)1−γ
− Ap3

(q21

q23

)1−γ]w1−γ
u

1− γ

=
[
p1 − Ap2

(r −m
u− r

)1−γ
− Ap3

(r − d
u− r

)1−γ]w1−γ
u

1− γ
.

It leads to

EU →


−∞, if A > A∗;

0, if A = A∗;

+∞, if A < A∗,

where

A∗ =
p1(u− r)1−γ

p2(r −m)1−γ + p3(r − d)1−γ =
E
[
[(R− r)+]1−γ)

]
E
[
[(r −R)+]1−γ)

] .
When wu → −∞, we have

EU ≈ −Ap1
1

1− γ
(−wu)1−γ + p2

1

1− γ

(
− q11

q12

wu

)1−γ
+ p3

1

1− γ

(−q21

q23

wu

)1−γ

=
[
− Ap1 + p2

(q11

q12

)1−γ
+ p3

(q21

q23

)1−γ](−wu)1−γ

1− γ

=
[
− Ap1 + p2

(r −m
u− r

)1−γ
+ p3

(r − d
u− r

)1−γ](−wu)1−γ

1− γ
.
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It leads to

EU →


−∞, if A > (A∗)−1;

0, if A = (A∗)−1;

+∞, if A < (A∗)−1.

Therefore, the optimization problem (42) has bounded solutions when A > Aincomplete and

does not have bounded solutions when A < Aincomplete, where

Aincomplete ≡ max
{E[[(R− r)+]1−γ)]

E[[(r −R)+]1−γ)]
,
E[[(r −R)+]1−γ)]

E
[
[(R− r)+]1−γ)]

}
.

Next, we consider the case m ≥ r. In this case,

Q1 = (0, q12, q13) ≡
(

0,
r − d
m− d

,
m− r
m− d

)
, Q2 = (q21, 0, q23) ≡

(
r − d
u− d

, 0,
u− r
u− d

)
.

The two constraints in problem (42) lead to

wu =
w0r − q23wd

q21

, wm =
w0r − q13wd

q12

. (A.10)

Following the same analysis above, one can show that A > A (A < A) is also the condition

under which EU → −∞ (EU → +∞) as wu → ±∞.

A.13 Proof of Proposition 11

A.13.1 m < r

We first consider the case m < r. Define

ŵu =
w0r − q12θ

q11

, w̃u =
w0r − q23θ

q21

, (A.11)

which is the value of wu when wm = θ and wd = θ, respectively.

We present our results for w0 ≥ r−1θ and w0 < r−1θ, respectively. First, when w0 ≥ r−1θ,

we have θ ≤ w̃u ≤ ŵu, which leads to four intervals for wu, corresponding to four different

cases as discussed below.

Case 1: wu < θ, wm > θ, wd > θ.

The expected utility is given by

EU = −p1A
1

1− γ
(θ−wu)1−γ+p2

1

1− γ
(q11

q12

)1−γ
(ŵu−wu)1−γ+p3

1

1− γ
(q21

q23

)1−γ
(w̃u−wu)1−γ.

58



Under the condition A > Aincomplete, EU → −∞ as wu → ±∞. In addition,

∂EU

∂wu
= p1A(θ − wu)−γ − p2

(q11

q12

)1−γ
(ŵu − wu)−γ − p3

(q21

q23

)1−γ
(w̃u − wu)−γ

>
[
Ap1 − p2

(q11

q12

)1−γ
− p3

(q21

q23

)1−γ]
(θ − wu)−γ ≥ 0,

showing that EU is increasing over the interval wu ∈ (−∞, θ).

Case 2: θ ≤ wu < w̃u, wm ≥ θ, wd ≥ θ.

In this case, wealth in the three states is in the gain domain, and EU is concave, ∂
2EU
∂w2

u
< 0,

and has a local maximum over this interval.

Case 3: w̃u ≤ wu < ŵu, wm > θ, wd ≤ θ.

The expected utility is given by EU = p1
1

1−γ (wu − θ)1−γ + p2
1

1−γ ( q11
q12

)1−γ(ŵu − wu)1−γ −

Ap3
1

1−γ ( q21
q23

)1−γ(wu − w̃u)1−γ. It leads to

∂EU

∂wu
= p1(wu − θ)−γ − p2

(q11

q12

)1−γ
(ŵu − wu)−γ − Ap3

(q21

q23

)1−γ
(wu − w̃u)−γ

< p1(wu − θ)−γ − Ap3

(q21

q23

)1−γ
(wu − w̃u)−γ

<
[
p1 − Ap3

(q21

q23

)1−γ]
(wu − θ)−γ ≤ 0,

where the last equality is based on the assumption A ≥ p1
p3

( q23
q21

)1−γ = p1
p3

(u−r
r−d )1−γ. Then EU

is decreasing over the interval wu ∈ [θ, w̃u).

Case 4: ŵu ≤ wu, wm ≤ θ, wd < θ.

The expected utility is given by EU = p1
1

1−γ (wu− θ)1−γ −Ap2
1

1−γ ( q11
q12

)1−γ(wu− ŵu)1−γ −

Ap3
1

1−γ ( q21
q23

)1−γ(wu − w̃u)1−γ. It leads to

∂EU

∂wu
= p1(wu − θ)−γ − Ap2

(q11

q12

)1−γ
(wu − ŵu)−γ − Ap3

(q21

q23

)1−γ
(wu − w̃u)−γ

<
[
p1 − Ap2

(q11

q12

)1−γ
− Ap3

(q21

q23

)1−γ]
(wu − ŵu)−γ ≤ 0,

showing that EU is decreasing over the interval wu ∈ [w̃u,+∞).

Therefore, the local maximum of EU over θ ≤ wu < w̃u in Case 2 is the global maximum.

Now, we derive the optimal wealth and value function. We use the Lagrangian approach to

find this local maximum. The Lagrangian is given by

L = E[U(w)]− λ1(EQ1 [w]− w0r)− λ2(EQ2 [w]− w0r)

= p1
(wu − θ)1−γ

1− γ
+ p2

(wm − θ)1−γ

1− γ
+ p3

(wd − θ)1−γ

1− γ

− λ1(q11wu + q12wm − w0r)− λ2(q21wu + q23wd − w0r).
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The FOC for the local maximum is

p1(wu − θ)−γ = λ1q11 + λ2q21, p2(wm − θ)−γ = λ1q12, p3(wd − θ)−γ = λ2q23,

which, together with the budget constraint, leads to the following equation governing the

optimal wealth w∗u:

p1(u− r)1−γ(wu − θ)−γ − p2(r −m)1−γ(ŵu − wu)−γ − p3(r − d)1−γ(w̃u − wu)−γ = 0. (A.12)

Then we can solve for w∗m and w∗d from (A.9). The value function is J = p1
(wu−θ)1−γ

1−γ +

p2
(wm−θ)1−γ

1−γ + p3
(wd−θ)1−γ

1−γ ≥ 0.

In particular, when w0 = r−1θ, we have ŵu = w̃u = θ, w∗u = w∗m = w∗d = θ, and Eu = 0.

Finally, we consider the case w0 < r−1θ. In this case, we have ŵu < w̃u < θ, which leads

to four intervals for wu, corresponding to four different cases as discussed below.

Case 1: wu < ŵu, wm > θ, wd > θ.

In this case, ∂EU
∂wu

< 0 when wu is in a left neighbourhood of ŵu, and EU → −∞ as

wu → −∞. Thus, EU has a local maximum in the interval wu ∈ (−∞, ŵu).

Case 2: ŵu ≤ wu < w̃u, wm ≤ θ, wd > θ.

In this case, EU is decreasing and convex when wu is small and decreasing and concave

when wu is large.

Case 3: w̃u ≤ wu < θ, wm < θ, wd ≤ θ.

In this case, EU is convex.

Case 4: θ ≤ wu <, wm ≤ θ, wd ≤ θ.

In this case, EU is increasing when wu is small (higher but close to θ) and tends to −∞

as wu → +∞. Thus, EU has a local maximum over wu ∈ [θ,+∞).

Using the Lagrangian approach, the wealth wu at the local maximum over wu ∈ (−∞, ŵu)

in Case 1 is governed by

p1(u− r)1−γA(θ−wu)−γ − p2(r−m)1−γ(ŵu−wu)−γ − p3(r− d)1−γ(w̃u−wu)−γ = 0, (A.13)

and the wealth wu at the local maximum over wu ∈ [θ,+∞) in Case 4 is governed by

p1(u−r)1−γ(wu−θ)−γ−p2(r−m)1−γA(wu− ŵu)−γ−p3(r−d)1−γA(wu− w̃u)−γ = 0. (A.14)
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A.13.2 m ≥ r

The case of m ≥ r is symmetric to the case of m < r.

Define

ŵd =
w0r − q21θ

q23

, w̃d =
w0r − q12θ

q13

, (A.15)

which is the value of wd when wu = θ and wm = θ, respectively.

When w0 ≥ r−1θ, we have θ ≤ ŵd ≤ w̃d, and EU is increasing over wd ∈ (−∞, θ),

concave over wd ∈ [θ, ŵd), decreasing over wd ∈ [θ, ŵd) if A ≥ p3
p1

( r−d
u−r )

1−γ, and decreasing

over wd ∈ [ŵd,+∞). As a result, the local maximum of EU over wd ∈ [θ, ŵd) is the global

maximum, at which the Lagrangian approach leads to w∗d governed by

p3(r − d)1−γ(wd − θ)−γ − p2(m− r)1−γ(w̃d − wd)−γ − p1(u− r)1−γ(ŵd − wd)−γ = 0. (A.16)

and w∗u and w∗m are determined by (A.10).

When w0 < r−1θ, we have w̃d < ŵd < θ, andEU has a local maximum over wd ∈ (−∞, w̃d)

and wd ∈ [θ,+∞), at which the wealth is governed, respectively, by

p3(r− d)1−γA(θ−wd)−γ − p2(m− r)1−γ(w̃d−wd)−γ − p1(u− r)1−γ(ŵd−wd)−γ = 0, (A.17)

and

p3(r−d)1−γ(wd− θ)−γ−p2(m− r)1−γA(wd− w̃d)−γ−p1(u− r)1−γA(wd− ŵd)−γ = 0. (A.18)

B Portfolio Choice under Decision Weights

B.1 Decision Weights under Portfolio Choice

In addition to the S-shaped utility function (2) that characterizes loss aversion, probability

weighting is another major component of prospect theory, which is a form of subjective

probabilities. Suppose that there are S states in the world. Denote by w̃s the outcome in

state s and ps the associated physical probability satisfying
∑

s ps = 1. Under cumulative

prospect theory (Tversky and Kahneman, 1992), the S outcomes are first sorted in ascending

order:27

w̃−m < w̃−m+1 < · · · < w̃−1 < w̃(0) = 0 < w̃1 < · · · < w̃n, (B.1)

27In a portfolio choice context, if the portfolio outcomes in two states are equal, they should be merged

into one state.
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where w̃−m, · · · , w̃−1 are losses, and w̃1, · · · , w̃n are gains relative to the reference point. With

a reference point θ, the losses/gains equal w̃s = ws − θ, where ws is the level of wealth in

state s. Then the decision weights πs for losses and gains are separately determined by the

cumulative probability weighting functions Ω±:π−i = Ω−(p−m + · · ·+ p−i)− Ω−(p−m + · · ·+ p−i−1), −i = −m, · · · ,−1,

πj = Ω+(pj + · · ·+ pn)− Ω+(pj+1 + · · ·+ pn), j = 1, · · · , n.
(B.2)

Tversky and Kahneman (1992) propose weighting functions of the form:

Ω±(P ) =
P δ±

[P δ± + (1− P )δ± ]1/δ
± . (B.3)

These functions tend to inflate the probabilities for both tails. The decision weights in (B.2)–

(B.3) may not sum up to 1. In this paper, we further assume
∑

s πs = 1 that allows us to

interpret πs as subjective probability. As a result, the expectation E[·] in the optimization

problem (1) is taken under the investor’s subjective probabilities (B.2).

In the decision problems studied in Tversky and Kahneman (1992), the set of outcomes

is predetermined. As a result, the decision weights are determined prior to decision making.

However, in portfolio choice problems as we studied, the outcomes depend on investor’s

decisions, which depends on the decision weights. As a result, portfolio choice under prospect

theory is a fixed-point problem.

Prior to studying the optimal portfolio choice problem, we discuss an implication of our

previous results under loss aversion for the decision weight. In a portfolio choice problem, the

decision weight for the status quo (w̃(0) = 0) as defined in (B.1) is endogenously determined.

In fact, Proposition 3 and Proposition 9 show that the case of w̃(≡ w− θ) = 0 occurs if and

only if θ = w0r, independent of probabilities. In this case, the investor holds only the riskless

asset, and there is only one (deterministic) outcome w = θ, implying that π0 ≡ 1 is en-

dogenously determined. This differs from the original decision problems with predetermined

outcomes studied in Tversky and Kahneman (1992), where all decision weights, including

the weight for outcome w̃(0), are predetermined by the probability weighting functions (B.2).

Lemma 5. In a portfolio choice problem, the decision weight π0 for the outcome w̃(0) = 0 is

endogenously determined and equals π0 ≡ 1.
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Lemma 5 implies that in portfolio choice, if one state has non-zero outcome (w̃(0) 6= 0),

then the outcomes in all states are not zero. Lemma 5 further implies that a pre-specified π0

in a portfolio choice/asset pricing problem may lead to inconsistency.

B.2 Optimal Portfolio Choice

Under prospect theory, the optimal portfolio choice is a fixed-point problem. We solve this

problem in two steps. First, given a fixed ordering of outcomes (portfolio values across

states), our results in Sections 3–4 can be used, leading to the optimal portfolios conditional

on this ordering. In the second step, we can derive the optimal portfolios by maximizing the

expected utility across all orderings.

To elaborate the effects of probability weighting on the optimal choice, we consider a

binomial model. Section 3 shows that there can be five different orderings of outcomes:

(a) wd < θ < wu;

(b) wu < θ < wd;

(c) θ < wd < wu;

(d) θ < wu < wd;

(e) wu = wd = θ,

(B.4)

and each leads to a different set of decision weights. Denote by π
(o)
u and π

(o)
d the decision

weights for states u and d, respectively, in ordering (o), where o = a, · · · , e. We further

denote the pricing kernel in this ordering by ξ
(o)
u and ξ

(o)
d , which satisfy ξ

(o)
u = r−d

π
(o)
u (u−d)r

and

ξd = u−r
π
(o)
d (u−d)r

.

B.2.1 Existence of Optimal Solutions

Under probability weighting, a necessary condition for the existence of optimal solutions is

that there exist (local) optimal solutions conditional on every ordering. Lemma 1 in Section

3 further shows that to derive the asymptotic behavior, we only need to consider orderings

(a) and (b), under which the EU may approach positive infinity, since the EU always has a

finite upper bound under the other orderings (c)–(e). As a result, Proposition 2 leads to the

following results on the solution existence conditions.
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Proposition 12. The optimal portfolio choice problem under prospect theory has no internal

solution if A < Apw, where

Apw = max

{(π(a)
u

π
(a)
d

)γ(ξ(a)
d

ξ
(a)
u

)1−γ
,
(π(a)

d

π
(a)
u

)γ(ξ(a)
u

ξ
(a)
d

)1−γ
,
(π(b)

u

π
(b)
d

)γ(ξ(b)
d

ξ
(b)
u

)1−γ
,
(π(b)

d

π
(b)
u

)γ(ξ(b)
u

ξ
(b)
d

)1−γ
}
.

(B.5)

By comparing with the lower bound in the case without probability weighting (10), we

have Apw ≥ A. Here the superscript “pw” stands for “probability weighting”. It shows that

the probability weighting tends to lead to a stricter lower bound for A, since Apw should be

the maximum of A across all orderings.

Furthermore, under probability weighting, there may not exist optimal solution even if

A > Apw as shown shortly in Example 3. In contrast, A > A is a sufficient condition for the

existence of internal solutions without probability weighting (Proposition 2). These results

thus show probability weighting intensifies the conditions for the existence of solutions.

Corollary 9. Probability weighting tends to lead to stricter conditions for the existence of

optimal solutions.

B.2.2 Optimal Solutions

In the following analyses, we suppose A > Apw and study the properties of the solutions.

First, we consider θ < w0r. In this case, only orderings (c) and (d) can occur as shown

in Proposition 3. Conditioning on an ordering ((c) or (d)), the decision weights π
(o)
u,d are

determined by the weighting functions (B.2), and then we can solve for the optimal solutions.

Denote by w
(o)
u,d the optimal wealth conditioning on ordering (o). Proposition 3 shows that

this conditional optimal wealth is given by:

w(o)
u − θ =

(
w0 − r−1θ

)[
π(o)
u (ξ(o)

u )1− 1
γ + π

(o)
d (ξ

(o)
d )1− 1

γ

]−1

(ξ(o)
u )−

1
γ ,

w
(o)
d − θ =

(
w0 − r−1θ

)[
π(o)
u (ξ(o)

u )1− 1
γ + π

(o)
d (ξ

(o)
d )1− 1

γ

]−1

(ξ
(o)
d )−

1
γ ,

for o = c, d. (B.6)

and the conditional subjective expected utility is given by

EU (o) =
(w0 − r−1θ)1−γ

1− γ
[π(o)
u (ξ(o)

u )1− 1
γ + π

(o)
d (ξ

(o)
d )1− 1

γ ]γ. (B.7)

The unconditionally optimal solution is obtained by comparing the conditional EU across

the orderings. The optimal wealth is summarized in the following proposition.28

28The case with w
(c)
u < w

(c)
d and w

(d)
u > w

(d)
d cannot occur in Proposition 13. In fact, the decision weights

64



Proposition 13. Suppose that A > Apw and θ < w0r.

1. When w
(c)
u > w

(c)
d and w

(d)
u < w

(d)
d , the value function is given by J = max{EU (c), EU (d)},

and the optimal wealth is given by (B.6) with the ordering that leads to the higher EU .

2. When w
(c)
u > w

(c)
d and w

(d)
u > w

(d)
d ,29 the value function is J = EU (c), and the optimal

wealth is given by w∗u = w
(c)
u and w∗d = w

(c)
d .

3. When w
(c)
u < w

(c)
d and w

(d)
u < w

(d)
d , the value function is J = EU (d), and the optimal

wealth is given by w∗u = w
(d)
u and w∗d = w

(d)
d .

The following example further illustrates Case 1 in Proposition 13.

Example 2. Suppose that A = 2, γ = 0.5, θ = 1, w0 = 1, r = 1.1, u = 1.65, d = 0.65,

p = 0.45, and δ+ = 0.61.30

Because θ < w0r, orderings (c) and (d) can happen. If ordering (c) applies, it follows

from (B.3) that the decision weights are π
(c)
u = 0.553 and π

(c)
d = 0.447. The optimal holding

is x(c) = 0.08, and the subjective expected utility is EU (c) = 0.65. In this case, the optimal

wealth is w
(c)
u = 1.14 and w

(c)
d = 1.06, satisfying θ < w

(c)
d < w

(c)
u , i.e., ordering (c). If

ordering (d) applies, the decision weights are π
(d)
u = 0.447 and π

(d)
d = 0.553. In this case,

x(d) = −0.003, EU (d) = 0.63, w
(d)
u = 1.098, w

(d)
d = 1.101, satisfying θ < w

(d)
u < w

(d)
d .

The subjective expected utility in ordering (c) is higher than that in (d); thus, x∗ = x(c)

and J = EU (c).

Two observations follow from Example 2. First, the asset exhibits positive skewness under

the physical measure since p < 0.5. Probability weighting inflates the probabilities for the

right tail (state u). As a result, the investor overestimates the stock expected return, holding

more stocks in her portfolio. This result is consistent with the results of Barberis and Huang

(2008) that prospect theory investors prefer lottery-like assets.

in orderings (c) and (d) satisfy π
(d)
u < p < π

(c)
u . In this case, the subjective risk premium in ordering (c)

is higher than that in ordering (d). However, the case with w
(c)
u < w

(c)
d and w

(d)
u > w

(d)
d implies that the

subjective risk premium is negative in ordering (c) and is positive in ordering (d).
29In this case, ordering (d) cannot occur, which requires wu < wd.
30In this example with θ < w0r, decision weights are determined by weighting function Ω+(P ) =

P δ
+

[P δ++(1−P )δ+ ]1/δ
+ , independent of the coefficient δ−, since all outcomes are positive.
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Second, without probability weighting, the physical risk premium of the stock is zero,

and the optimal holdings of the stock are zero x∗ = 0 as shown in Proposition 3. However,

with probability weighting, conditional on either longing or shorting the stock, there is an

optimal solution, which “confirms” the investor’s initial choice in the first step.

Proposition 13 Case 2 tends to occur when the asset return has high skewness. In this

case, the investor overestimates the right tail (state u) probability, leading to higher holdings

of stocks. In contrast, Proposition 13 Case 3 tends to occur when the asset return is more

negatively skewed. These results again show that probability weighting cause investors to

prefer assets with positive skewness and dislike assets with negative skewness.

It follows from Proposition 13 that when the optimal solution exists, the value function

tends to be higher than the case without probability weighting since probability weighting

allows the investor to compare different orderings of portfolio values when making the optimal

choice. In addition, Corollaries 1–4 in Section 3 still hold true under probability weighting.

Next, we consider the case θ = w0r. Proposition 3 shows that the investor holds only the

riskless asset when θ = w0r. In this case, there is only 1 outcome: w(e) = θ, i.e., ordering

(e). Then the decision weight is π(e) ≡ 1, and the results on the optimal portfolios and value

function are the same as the case without probability weighting.

Proposition 14. Suppose that A > Apw and θ = w0r. Under prospect theory preferences,

the optimal stock holdings are x∗ = 0, the optimal wealth is given by wu,d = θ, and the value

function is J = 0.

Finally, we can also derive the optimal wealth for the case θ > w0r following the same

discussions.31 We discuss an example in this case that shows that A > Apw is not sufficient

to guarantee the existence of optimal solutions.

Example 3. Suppose that θ > w0r, A = 2, γ = 0.5, r = 1.1, u = 1.2, d = 1, p = 0.5,

δ+ = 0.61, and δ− = 0.5. In this case, orderings (a) and (b) can happen. If ordering (a)

applies, the decision weights are π
(c)
u = 0.46 and π

(c)
d = 0.54. In this case, the optimal wealth

satisfies w
(a)
u < θ < w

(a)
d , which is inconsistent with ordering (a). Thus, this ordering cannot

occur. If ordering (b) applies, π
(b)
u = 0.54 and π

(b)
d = 0.46. In this case, w

(b)
d < θ < w

(b)
u ,

which is inconsistent with ordering (b). Thus, this ordering cannot occur either.

31In this case, there will be eight different situations. Results are available upon request.
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Therefore, the fixed point problem of optimal choice has no solution even if A > Apw.

However, under the parameters but without probability weighting, the optimal choice has

solutions.
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